An experiment in teaching functional programming to musicology students

Philippe ÉZÉQUEL

CIEREC, Université Jean Monnet, Saint-Étienne

Summary

- 1. Background and motivations
- 2. The Peano language
- 3. A tentative curricula (interleaved)
- 4. Feedback from the RIM students (2015 and 2016)
- 5. Technicalities

Background

- Computer Science perspective
- More than 10 years feedback on teaching functional programming
- Adaptation to musicology students: Lisp is the final goal

Motivations

A statement

Functional programming is hard :

- for beginners in programming
- for seasoned programmers used to imperative paradigm

Possible explanations

- "real" functional programs may be rather obfuscated "Unfortunately a Russian spy stole the last meg of a LISP program for controlling our nuclear defense systems. Fortunately, it was all right-parenthesis."
- pure functional languages lack well known control structures

What is needed

A simple language

- with minimal syntactic sugar
- Turing-equivalent
- allowing to play with lists (and trees?)
- providing useful features for learners

The Peano machine: basic model

- evaluates arithmetic expressions
- one can define new functions

Expressions

- (i) 0
- (ii) ++ Expr
- (iii) if $E_1 = E_2$ then E_3 else E_4
- (iv) function call

Where the name Peano comes from

Giuseppe Peano described the integers using 0, successor function and recurrence

The basic Peano machine: curricula

Arithmetic

- -- Expr
- addition, subtraction
- comparisons, multiplication
- quotient, remainder

Programming skills

- recurrence, recursion and induction
- purely recursive programming
- iterative recursive programming using accumulators

The Peano machine: DeLuxe model

Basic Peano machine, plus

- 1. all the arithmetic operators defined so far
- 2. List data type: cons, car, cdr, null

The DeLuxe Peano machine: curricula

Lists

- length of a list
- append two lists
- reverse a list, in 3 flavors
- playing with lists : shuffle, interleave, lists of lists, . . .

Programming and Computer Science skills

- there is more than one way to do something
- · complexity issues steming from algorithms or programming
- "Elegance is not optional" (R. O'Keefe, The Craft of Prolog)

Feedbacks from the RIM students

- years 2015 and 2016
- 3 students of the 2015 class (out of 8), 9 of the 2016 class (out of 10)
- only positive feedbacks:
 - "Syntax and semantics are simple and clear"
 - "Way easier to program with than Lisp"
 - "A good introduction to Lisp, OpenMusic and Faust"
 - "The tools provided by the interpreter are very useful"

Technicalities: how to use the Peano Machine

- edit a source file
- compile it, getting an interpreter
- launch the interpreter
- demo!

Technicalities: features of the interpreter

- read-eval-print loop
- history of commands
- line editing facilities (à la Emacs...)
- special commands :
 - listing : to get the list of the functions defined
 - trace: to have a trace of the functions calls (notrace to switch off)
 - calc: to show how many internal operations were executed while evaluating an expression (nocalc to switch off)
 - mem: to show how many memory cells were needed while evaluating an expression (nomem to switch off)
- demo!

Technicalities: implementation

- source to source compilation from Peano to C, then gcc
- usual list and binary tree functions
- atoms à la Lisp
- graceful handling of non-terminating function calls
- demo!

Technicalities: what remains to be done

- auto completion of function names
- infinite precision arithmetic
- more pleasant interface
- •

Downloading the Peano machine

You can freely download the Peano machine at this URL :

http://webperso.univ-st-etienne.fr/~ezequel/Peano/