
An experiment in teaching functional programming
to musicology students

Philippe ÉZÉQUEL

CIEREC, Université Jean Monnet, Saint-Étienne



Summary

1. Background and motivations
2. The Peano language
3. A tentative curricula (interleaved)
4. Feedback from the RIM students (2015 and 2016)
5. Technicalities



Background

• Computer Science perspective
• More than 10 years feedback on teaching functional
programming

• Adaptation to musicology students : Lisp is the final goal



Motivations

A statement
Functional programming is hard :

• for beginners in programming
• for seasoned programmers used to imperative paradigm

Possible explanations

• “real” functional programs may be rather obfuscated
“Unfortunately a Russian spy stole the last meg of a LISP program
for controlling our nuclear defense systems. Fortunately, it was all
right-parenthesis.”

• pure functional languages lack well known control structures



What is needed

A simple language

• with minimal syntactic sugar
• Turing-equivalent
• allowing to play with lists (and trees ?)
• providing useful features for learners



The Peano machine : basic model

• evaluates arithmetic expressions
• one can define new functions

Expressions

(i) 0
(ii) ++ Expr
(iii) if E1 = E2 then E3 else E4

(iv) function call

Where the name Peano comes from
Giuseppe Peano described the integers using 0, successor function
and recurrence



The basic Peano machine : curricula

Arithmetic

• −− Expr
• addition, subtraction
• comparisons, multiplication
• quotient, remainder

Programming skills

• recurrence, recursion and induction
• purely recursive programming
• iterative recursive programming using accumulators



The Peano machine : DeLuxe model

Basic Peano machine, plus

1. all the arithmetic operators defined so far
2. List data type : cons, car, cdr, null



The DeLuxe Peano machine : curricula

Lists

• length of a list
• append two lists
• reverse a list, in 3 flavors
• playing with lists : shuffle, interleave, lists of lists,. . .

Programming and Computer Science skills

• there is more than one way to do something
• complexity issues steming from algorithms or programming
• “Elegance is not optional” (R. O’Keefe, The Craft of Prolog)



Feedbacks from the RIM students

• years 2015 and 2016
• 3 students of the 2015 class (out of 8), 9 of the 2016 class
(out of 10)

• only positive feedbacks :
• “Syntax and semantics are simple and clear”
• “Way easier to program with than Lisp”
• “A good introduction to Lisp, OpenMusic and Faust”
• “The tools provided by the interpreter are very useful”



Technicalities : how to use the Peano Machine

• edit a source file
• compile it, getting an interpreter
• launch the interpreter
• demo !



Technicalities : features of the interpreter

• read-eval-print loop
• history of commands
• line editing facilities (à la Emacs. . . )
• special commands :

• listing : to get the list of the functions defined
• trace : to have a trace of the functions calls (notrace to

switch off)
• calc : to show how many internal operations were executed

while evaluating an expression (nocalc to switch off)
• mem : to show how many memory cells were needed while

evaluating an expression (nomem to switch off)

• demo !



Technicalities : implementation

• source to source compilation from Peano to C, then gcc
• usual list and binary tree functions
• atoms à la Lisp
• graceful handling of non-terminating function calls
• demo !



Technicalities : what remains to be done

• auto completion of function names
• infinite precision arithmetic
• more pleasant interface
• . . .



Downloading the Peano machine

You can freely download the Peano machine at this URL :

http://webperso.univ-st-etienne.fr/~ezequel/Peano/

http://webperso.univ-st-etienne.fr/~ezequel/Peano/

