
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Lessons from Teaching Music-Informatics to
Musicologists

Albert Gräf <aggraef@gmail.com>
IKM, Music-Informatics at JGU Mainz

November 2015

mailto:aggraef@gmail.com


.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Synopsis

▶ Music-Informatics at JGU in Mainz
▶ Some Thoughts on Teaching Music-Informatics
▶ Programming Languages and Tools
▶ Conclusions



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bridging the Gap…



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bridging the Gap…

▶ From teacher to students (didactics)
▶ From science to art (interdisciplinarity)
▶ From theory to application (practice)
▶ From basics to expert knowledge (specialization)
▶ From non-programmer to programmer (languages and tools)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Music-Informatics at JGU

▶ Students: mostly Musicology and Music, but also Computer
Science, Mathematics, Media Science; “Digital Humanities”
Master in the making

▶ Various courses of studies: B.A., B.Ed., Master; up until this year
also traditional Magister and Diploma studies (currently 282
students in total, 221 among them BA/BEd, 134 in Musicology)

▶ Most courses either take the form of seminars or tutorials,
number of participants ranging from 5 to 40 students, typically
some 20-30 students per semester

▶ Self-built computer music lab (up to 10 students) with
MIDI/OSC equipment and PCs, mostly running Linux and other
open-source software



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Some Questions

▶ Who? Who should learn Music-Informatics? Who will (or
should) care about it?

▶ Why? Why teach Music-Informatics at all? What are the benefits?
▶ What? What are the important topics? What are the prerequisites

(math, computer science, music theory, etc.)?
▶ How? How to best convey these topics? How to bridge the gap

between theory and practice? How to equip students with the
necessary prerequisites?



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Our Situation at JGU

▶ Who? Students from widely different backgrounds in the same
course pose a considerable challenge ⇒ working in groups and
teams where the kind of course permits it

▶ Why? This is all about motivation; students have their own
agendas, driven by courses of studies but also by what they find
interesting, worthwhile and (last but not least) fun

▶ What? Wide interdisciplinary range of subjects, “classical” (e.g.,
mathematical theory of music, signal processing) and “hot” topics
(e.g., interfaces for musical expression, mobile devices)

▶ How? Requires a kind of Faustian mindset (“Two souls alas! are
dwelling in my breast.”)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

What?

algorithmic composition remixing

sound synthesis digital sound processing
mathematical theory of music sound design

tunings and temperaments musical codes
scales and modes sound and video technologies

musical acoustics plug-in technology

psycho-acoustics controller technology

music notation computer programming
musical analysis database and web technologies



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

How?

▶ Scientific method: enable students to do their own research
(lectures, seminars)

▶ Practical training: enable students to actually apply theoretical
knowledge in their research and artistic work (tutorials)

▶ Trying to integrate as much group work and mini projects as
possible

▶ Still, programming seems to be the biggest hurdle for most
students (mathematics comes second place)

▶ In my experience, there’s no silver bullet, it’s just practice,
practice, practice, …, so we should make that as easy as possible!



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Tools

Trying to use portable open-source software as much as possible (we have
Linux in the lab, but students usually have Mac or Windows systems).

▶ audio and video editing software (Audacity, Kdenlive, Openshot)
▶ DAW software (Ardour, Reaper, Tracktion)
▶ samplers and sequencers, software synthesizers, etc. (QSynth)
▶ notation software (Lilypond, Frescobaldi, MuseScore)
▶ visual dataflow programming (Pd)
▶ programming languages (Faust, Pure)

▶ imperative, object-oriented, functional?
▶ general-purpose versus DSL?
▶ experimental or mainstream?



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Tools



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Pd, Faust and Pure

▶ Like Max/MSP, Pd (a.k.a. Pure Data) is a kind of visual
programming environment (also known as a dataflow
programming language) to build complex sound processing
algorithms from simple building blocks.

▶ Pd is easy to work with but lacks the flexibility of a full-blown
programming language. Its built-in objects basically determine
what you can do with it.

▶ If you need to go beyond that then you have to create your own
objects, called externals. Normally this is done in C, but using
Pd-Pure and Pd-Faust you can easily do this in the Pure and Faust
programming languages.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Pd-Faust

▶ As you all know, Faust is a functional programming language for
creating signal processing plug-ins.

import(”music.lib”);

gate = button(”gate”);

gain = hslider(”gain”, 0.3, 0, 3, 0.01);

freq = hslider(”freq”, 440, 20, 2000, 1);

process = gate*gain*osc(freq);

▶ The Faust compiler can produce efficient, native code for various
environments, including Pd and Pure.

▶ Pd-Faust is a library of Pd externals written entirely in Pure which
lets you load Faust dsps dynamically in Pd.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Pd-Pure

▶ Faust is tailored for processing of synchronous numeric data,
great for doing instruments and audio effects.

▶ Pure comes in when symbolic processing of complex control data
is needed.

▶ Pure is based on term rewriting (symbolic evaluation of
expressions), but it compiles to efficient native code on the fly,
using JIT (just in time) compilation via LLVM.

▶ Pd-Pure is a Pd plug-in loader which lets you program Pd objects
in Pure. It also supports dynamic reloading of Pure programs to
ease debugging and live-coding.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Pure: A (Very) Quick Overview

▶ Pure is a functional programming language based on term
rewriting, i.e., the symbolic evaluation of expressions.

▶ Thus, all data in Pure takes the form of expressions (also called
terms), like 12345, 3.1415, ”abc”, bang

▶ Compound expressions are formed using function applications,
like fib 21, note 60 127, 1:2:3:4:5:[] = [1,2,3,4,5]

▶ Functions are defined using equations and pattern matching, e.g.:

fib 0 = 0; fib 1 = 1;

fib n = fib(n-1) + fib(n-2) if n>1;

▶ Equations are used as term rewriting rules in order to reduce
expressions to their simplest form (normal form):
fib 2 => fib 1 + fib 0 => 1 + 0 => 1

▶ Cue short live demo here



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Polymorphism and Dynamic Typing

▶ All data structures and functions in Pure are polymorphic, i.e.,
they can take arguments of as many different kinds of data as you
like.

▶ This is also known as dynamic typing, as opposed to static typing
where the types of arguments are restricted. Think (e.g.) Python
versus Java, or Lisp versus Haskell.

▶ Makes things much easier when plugging into a dynamic
environment like Pd.

▶ Pd messages (numbers, symbols, lists) can be mapped 1-1 to
corresponding Pure data and vice versa in a straightforward
manner.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Pd Objects the Imperative Way: The Actor Model

▶ Pd basically uses an actor model of computation
▶ An object takes input data from its inlets, …
▶ … performs some computation, …

(possibly modifying its internal state)
▶ … and sends output data to its outlets.

counter = process with

process _ = n when

n = get counter;

put counter (n+1);

end;

end when

counter = ref 0;

end;



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Pd Objects the Functional Way: The Stream Model

▶ The actor model is inelegant because it requires internal state, i.e.,
side-effects.

▶ But there’s a way to describe the operation of an actor in a purely
functional manner, without any side effects: stream processing.

▶ Example: the Fibonacci numbers as a stream:

fibs = fibs 0 1 with fibs a b = a : fibs b (a+b) & end;

▶ Turn the above stream into a stream processing function for use
with Pd:

using actor;

fibs = actor (f (fibs 0 1)) with

f (x:xs) (y:ys) = x : f xs ys &;

fibs a b = a : fibs b (a+b) &;

end;



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Demo: Pd-Pure and Pd-Faust



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Future Work

▶ Also available: Pure and Faust LV2 and VST plug-ins which can
be run in DAW programs; the latter provide a standardized
interface to polyphonic/multitimbral instruments with MIDI
controller support and MTS tuning capabilities

▶ Long-term goal: make all these come together under a universal
plug-in interface (“PlugR”) which will let you run the same
plug-ins in AU/LV2/VST hosts or Csound/Max/Pd/SC3 etc.
without any (source) changes

▶ Short-term: Unification of the LV2/VST interfaces, improved
support for the LV2/VST/Pd-related architectures in the Faust
online compiler

▶ We need a book on Faust (maybe join forces?)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Download Links

My stuff on Bitbucket (Pure, pd-faust, faust-vst, etc.):
https://bitbucket.org/agraef/agraef.bitbucket.org

Pure: http://purelang.bitbucket.org/

Faust: http://faust.grame.fr/, SourceForge:
http://sf.net/projects/faudiostream/

https://bitbucket.org/agraef/agraef.bitbucket.org
http://purelang.bitbucket.org/
http://faust.grame.fr/
http://sf.net/projects/faudiostream/

