
Meet the Cat: Pd-L2Ork and its
New Cross-Platform Version “Purr Data”

Ivica Ico Bukvic
Virginia Tech SOPA ICAT

DISIS L2Ork
Blacksburg, VA, USA 24061

ico@vt.edu

Albert Gräf
Johannes Gutenberg
University (JGU)

IKM, Music-Informatics
Mainz, Germany

aggraef@gmail.com

Jonathan Wilkes
jon.w.wilkes@gmail.com

Abstract

The paper reports on the latest developments of Pd-
L2Ork, a fork of Pd-extended created by Ico Bukvic
in 2010 for the Linux Laptop Orchestra (L2Ork).
Pd-L2Ork offers many usability improvements and
a growing set of objects designed to lower the learn-
ing curve and facilitate rapid prototyping. Started
in 2015 by Jonathan Wilkes, Purr Data is a cross-
platform port of Pd-L2Ork which has recently been
released as Pd-L2Ork version 2. It features a com-
plete GUI rewrite and Mac/Windows support, lever-
aging JavaScript and Node-Webkit as a replacement
for Pd’s aging Tcl/Tk-based GUI component.

Keywords

Pd-L2Ork, Purr Data, fork, usability, L2Ork

1 Introduction

Pure Data, also known as Pd, [15] is arguably
one of the most widespread audio and multime-
dia dataflow programming languages. Pd’s his-
tory is deeply intertwined with that of its com-
mercial counterpart, Cycling 74’s Max [16]. A
particular strength shared by the two platforms
is in their modularized approach that empowers
third party developers to extend the function-
ality without having to deal with the under-
lying engine. Perhaps the most profound im-
pact of Pd is in its completely free and open
source model that has enabled it to thrive in
a number of environments inaccessible to its
commercial counterpart. Examples include cus-
tom in-house solutions for entertainment soft-
ware (e.g. EaPd [10]), Unity3D [18] and smart-
phone integration via libPD [1], an embeddable
library (e.g. RjDj [11], PdDroidParty [12], and
Mobmuplat [9]), and other embedded platforms,
such as Raspberry Pi [4].

Pd’s author Miller Puckette has spearheaded
a steady development pace with the primary
motivation being iterative improvement while
preserving backwards compatibility. Puckette’s
work on Pd continues to be instrumental in

fostering creativity and curiosity across genera-
tions, and as the library of works relying on Pd
grows, so does the importance of conservation
and ensuring that Pd continues to support even
the oldest of patches. However, the inevitable
side-effect of the increasingly conservationist fo-
cus of the core Pd is that any new addition has
to be carefully thought out in order to account
for all the idiosyncrasies of past versions and en-
sure there is a minimal chance of a regression.
This vastly limits the development pace.

As a result, the Pd community sought to com-
plement Pure Data’s compelling core function-
ality with a level of polish that would lower the
initial learning curve and improve user experi-
ence. In 2002 the community introduced the
earliest builds of Pd-extended [13], the longest
running Pd variant. There were other ambi-
tious attempts, like pd-devel, Nova, and Desire-
Data [14], and in recent years Pd has seen a
resurgence in forks that aim to sidestep usabil-
ity issues through alternative approaches, in-
cluding embeddable solutions (e.g. libPd) and
custom front ends. Pd-extended was probably
the most popular alternative Pd version which
continues to be used by many, even though it
was abandoned in 2013 by its maintainer Hans-
Christoph Steiner due to lack of contributors to
the project.

Pd-L2Ork presents itself as a viable alterna-
tive which started out as a fork of Pd-extended
and continues to be actively maintained. We be-
gin with a discussion of Pd-L2Ork’s history, mo-
tivation and implementation. We then look at
Pd-L2Ork’s most recent off-spring nick-named
“Purr Data”, which has recently been released
as Pd-L2Ork version 2, runs on Linux, Mac
and Windows, and offers some unique new fea-
tures, most notably a completely new and im-
proved GUI component. The paper concludes
with some remarks on availability and avenues
for future developments.

2 History and Motivation

Introduced in 2009 by Bukvic, Pd-L2Ork [2]
started as a Pd-extended 0.42.5 variant. The
focus was on nimble development designed to
cater to the specific needs of the Linux Lap-
top Orchestra (L2Ork), even if that meant sub-
optimal initial implementations that would be
ironed out over time as the understanding of the
overall code base improved and the target pur-
pose was better understood through practice.

An important part of L2Ork’s mission was
educational outreach. Consequently, a major-
ity of early additions to Pd-extended focused
on usability improvements, including graphical
user interface and editor functions. While some
of these were incorporated upstream, a growing
number of rejected patches began to build an
increasing divide between the two code bases.
As a result in 2010 Bukvic introduced a sepa-
rately maintained Pd-extended variant, named
Pd-L2Ork after L2Ork for which it was origi-
nally designed.

Over time, as the project grew in its scope
and visibility, it attracted new users, and even-
tually a team of co-developers, maintainers and
contributors formed around it. This is obvi-
ously important for the long-term viability of
the project, so that it doesn’t fall victim to Pd-
extended’s fate, and thus the development team
continues to invite all kinds of contributions.

Pd-L2Ork’s philosophy grew out of its ini-
tial goals and the early development efforts. It
is defined by a nimble development process al-
lowing both major and iterative code changes
for the sake of improving usability and stabil-
ity as quickly as possible. Another important
aspect of this philosophy is releasing improve-
ments early and often in order to have work-
ing iterations in the hands of dozens of students
of varying educational backgrounds and experi-
ence, which ensured quick vetting of the ensuing
solutions.

Despite an ostensibly lax outlook on back-
wards compatibility, to date Pd-L2Ork and
Purr Data remain compatible with Pd (the
-legacy flag can be used to disable some of the
more disruptive changes). In particular, there
haven’t been any changes in the patch file for-
mat, so patches created in Pd still work without
any ado in Pd-L2Ork and vice versa (assuming
that they don’t use any externals which aren’t
available in the target environment). Also, com-
munication between GUI and engine still hap-
pens through sockets, so that the two can run

in separate processes (running the engine with
real-time priorities).

Like Pd-extended, Pd-L2Ork provides a sin-
gle turnkey monolithic solution with all the li-
braries included in one package. This minimizes
overhead in configuring the programming envi-
ronment and installing supplemental libraries,
and addresses the potential for binary incom-
patibility with Pd.

3 Implementation

Pd-L2Ork’s code base increasingly diverges
from Pd. It consists of many bug-fixes, addi-
tions and improvements, which can be split into
engine, usability, documentation, new and im-
proved objects and libraries, scaffolded learning
and rapid prototyping. In this section we high-
light some of the most important user-visible
changes and additions, more details can be
found in the authors’ PdCon paper [3].

3.1 Engine

Internal engine contributions have largely fo-
cused on implementing features and bug-fixes
requested by past and existing Pd users. Some
of these include patches that have never made it
to the core Pd, such as the cord inspector (a.k.a.
magic glass), improved data type handling logic,
and support for outlier cases that may otherwise
result in crashes and unexpected behavior. Ad-
ditional checks were implemented for the Jack
[6] audio backend to avoid hangs in case Jack
freezes. Default sample rate settings are pro-
vided for situations where Pd-L2Ork may run
headless (without GUI), thus removing the need
for potentially unwieldy headless startup proce-
dures. The $0 placeholder in messages now au-
tomatically resolves to the patch instance, while
the $@ argument can be used to pass the entire
argument set inside a sub-patch or an abstrac-
tion.1 [trigger]2 logic has been expanded to
allow for static allocation of values, which alle-
viates the need for creating bang triggers that
are fed into a message with a static value.

Visual improvements: The Tk-based [19]
graphical engine has been replaced with TkPath
[17] which offers an SVG-enabled antialiased

1In Pd parlance, an abstraction is a Pd patch encap-
sulating some functionality to be used as a subpatch in
other patches.

2Here and in the following we employ the usual con-
vention to indicate Pd objects by enclosing them in
brackets.

canvas.3 A lot of effort went into streamlining
“graph-on-parent” (Pd’s facility to draw GUI
elements in a subpatch on its parent), includ-
ing proper bounding box calculation and detec-
tion, optimizing redraw, and resolving drawing
issues with embedded graph-on-parent patches.
Improvements also focused on sidestepping the
limitations of the socket-based communication
between the GUI and the engine, such as key-
board autorepeat detection. As a result, the
[key] object can be instantiated with an op-
tional argument that enables autorepeat filter-
ing, while retaining backward compatibility.

Stacking order: Another substantial core
engine overhaul pertains to consistent ordering
of objects in the glist (a.k.a. canvas) stack. This
has helped ensure that objects always honor the
visual stacking order, even after undo and redo
actions, and has paved the way towards more
advanced functionality including advanced edit-
ing techniques and a system-wide preset engine.

Presets: The preset engine consists of two
new objects [preset hub] and [preset node].
Nodes can be connected to various objects, in-
cluding arrays, and can broadcast the current
state to their designated hub for storing and re-
trieval. Multiple hubs can be used with vary-
ing contexts. The ensuing system is univer-
sal, efficient, unaffected by editing actions, and
abstraction- and instance-agnostic (e.g., using
multiple instances of the same abstraction is
automatically supported). It supports anything
from recording individual states to real-time au-
tomation of multiple parameters through peri-
odic snapshots.

Data structures: Data structures are an ad-
vanced feature of Pd to produce visualizations
of data collections such as interactive graphical
scores. Pd-L2Ork enhances these with the addi-
tion of sprites and new ways to manipulate the
data.

3.2 Usability

On the surface Pd-L2Ork builds on Pd-
extended’s appearance improvements. Under
the hood, with the canvas being drawn as a
collection of SVG shapes, the entire ecosys-
tem lends itself to a number of new opportuni-
ties. The most obvious involve antialiased dis-
play, advanced shapes (e.g. Bézier curves that
are also used for drawing patch cords), support

3SVG = Scalable Vector Graphics, a widely used vec-
tor image format standardized by the W3C.

Figure 1: Pd-L2Ork running on Linux.

for image formats with alpha channel, and ad-
vanced data structure drawing and manipula-
tion using SVG-centric enhancements (Fig. 1).

A majority of usability improvements focus
on the editor. The consistent stacking order im-
plemented in the engine has served as a foun-
dation for the infinite undo, as well as to-front
and -back stacking options that are accessible
via the right-click context menu. Lots of im-
provements and polishing went into the iemgui
objects, such as improved positioning, enhanced
properties dialogs and graph-on-parent behav-
ior.

The old autotips patch was integrated (and
improved upon). The tidy up feature has been
redesigned to offer a two-step realignment of ob-
jects. (The first key press aligns the objects on
a single axis, while the second respaces them, so
that they are equidistant from each other.) In-
telligent patching was implemented to provide
four variants of automatically generating mul-
tiple patch cords based on user’s selection, and
to provide additional ways of creating multiple
connections (e.g. SHIFT + mouse click). The
canvas scrolling logic has been overhauled to
minimize the use of scrollbars, provide minimal
visual footprint, and ensure most of the patch
is always visible.

Pd-L2Ork supports drag and drop and has
support for pasting Pd code snippets (using Pd’s
“FUDI” format) directly onto the canvas. The
copy and paste engine has been overhauled to
improve buffer sharing across multiple applica-
tion instances. The entire graphics engine is
themeable and its settings are by default saved
with the rest of the configuration files.

3.3 Object Libraries

Apart from the core Pd objects and improve-
ments described in the Engine section above,
Pd-L2Ork offers a growing number of revamped

objects while also pruning redundant and un-
necessary objects.

Special attention was given to supporting
the Raspberry Pi (RPi) platform with a cus-
tom set of objects designed specifically to har-
ness the full potential of the RPi GPIO and
I2C interfaces, including [disis gpio] and
[disis spi] [4]. The cyclone library has re-
ceived new documentation and a growing num-
ber of bugfixes and improvements. Ggee li-
brary’s [image] has received a significant over-
haul and became the catchall solution for image
manipulation. In addition to the standard Pd-
extended libraries, Pd-L2Ork has reintroduced
[disis munger~] and an upgraded version of
the [fluid~] soundfont synth external which
depend on the flext library. Other libraries in-
clude fftease, lyonpotpourri, and RTcmix˜. Pd-
L2Ork bundles advanced networking externals
[disis netsend] and [disis receive], con-
venience externals like [patch name], and ab-
stractions (e.g., those of the K12 learning mod-
ule [5], and a growing number of L2Ork-specific
abstractions designed to foster rapid prototyp-
ing). A few libraries have been removed due
to lack of support and/or GUI object imple-
mentations that utilize hardwired Tcl-specific
workarounds.

3.4 Introspection

Most interpreted languages have mechanisms to
do introspection. Pd-L2Ork features a collec-
tion of “info” classes for retrieving the state
of the program on a number of levels, from
the running Pd instance to individual objects
within patches. Four classes provide the basic
functionality:

• [pdinfo] reflects the state of the running
Pd instance, including dsp state, avail-
able/connected audio and midi devices,
platform, executable directory, etc.

• [canvasinfo] is a symbolic receiver for the
canvas, abstraction arguments, patch file-
name, list of current objects, etc. The ob-
ject takes a numeric argument to query the
state of parent or ancestor canvases.

• [classinfo] offers information about the
currently loaded classes in the running in-
stance. This includes creator argument
types, as well as the various methods.

• [objectinfo] returns bounding box, class
type, and size for a particular object on the
canvas.

While the introspection provided by these
classes is relatively rudimentary, it alleviates the
need for a large number of external libraries that
add missing core functionality. For example,
Pd-L2Ork ships with several compiled externals
whose purpose is to fetch the list of abstrac-
tion arguments. These externals all have dif-
ferent interfaces and are spread across various
libraries. Having one standard built-in interface
for fetching arguments that behaves similarly to
other introspection interfaces improves the us-
ability of the system. Furthermore, opening up
rudimentary introspection to the user increases
the composability of Pd. Functionality that pre-
viously only existed inside the C code can now
be implemented as an abstraction (i.e., in Pd
itself). These don’t require compilation and are
more accessible to a wider number of users to
test and improve them.

4 Purr Data a.k.a. “The Cat”

Despite all of the improvements it brings to
the table, Pd-L2Ork still employs the same old
Tcl/Tk environment to implement its graphi-
cal user interface. This is both good and bad.
The major advantage is compatibility with the
original Pd. On the other hand, Tcl/Tk looks
and feels quite dated as a GUI toolkit in this
day and age. Tcl is a rather basic program-
ming language and its libraries have been falling
behind, making it hard to integrate the latest
GUI, multimedia and web technologies. Last
but not least, Pd-L2Ork’s adoption was severely
hampered by the fact that it relies on some
lesser-used Tcl/Tk extensions (specifically, Tk-
Path and the Tcl Xapian bindings) which are
not well-supported on current Mac and Win-
dows systems, and thus would have required
substantial porting effort to make Pd-L2Ork
work there.

Purr Data was created in 2015 by Wilkes to
address these problems.4 The basic idea was
to replace the aging Tcl/Tk GUI engine with
a modern, open-source, well-supported cross-
platform framework supporting programmabil-
ity and the required advanced 2D graphical ca-
pabilities, without being tied into a particular
GUI toolkit again.

4Readers may wonder about the nick-name of this
Pd-L2Ork offspring, to which the author in his origi-
nal announcement at http://forum.pdpatchrepo.info
only offered the explanation, “because cats.” Quite obvi-
ously the name is a play on “Pure Data” on which “Purr
Data” is ultimately based, but it also raises positive con-
notations of soothing purring sounds.

http://forum.pdpatchrepo.info

Employing modern web technologies seemed
an obvious choice to achieve those goals, as they
are well-supported, cross-platform and toolkit-
agnostic, programmable (via JavaScript), and
offer an extensive programming library and
built-in SVG support (as a substitute for Pd-
L2Ork’s use of TkPath which incidentally fol-
lows the SVG graphics model).

There are basically two main alternatives
in this realm, nw.js5 a.k.a. “node-webkit” and
Electron6. These both essentially offer a stand-
alone web browser engine combined with a
JavaScript runtime. nw.js was chosen because it
offers some technical advantages deemed impor-
tant for Purr Data (in particular, an easier in-
terface to create multi-window applications and
better support for legacy Windows systems).

So, in a nutshell, Purr Data is Pd-L2Ork with
the Tcl/Tk GUI part ripped out and replaced
with nw.js. Purr Data’s GUI is written en-
tirely in JavaScript, which is a much more ad-
vanced programming language than Tcl with an
abundance of libraries and support materials.
Patches are implemented as SVG documents
which are generally much more responsive and
offer better graphical capabilities than Tk win-
dows. They can also be zoomed to 16 different
levels and themed using CSS, improving usabil-
ity. The contents of a patch window is drawn
and manipulated using the HTML5 API. Thus
the code to display Pd patches is very portable
and will work in any modern GUI toolkit that
has a webview widget.

There are also some disadvantages with this
approach. First, Tcl code in Pd’s core and in
the externals needs to be ported to JavaScript
to make it work with the new GUI; we’ll touch
on this in the following subsection.

Second, the size of the binary packages
is much larger than with Pd-L2Ork or Pd-
extended since, in order to make the packages
self-contained, they also include the full nw.js
binary distribution. This is a valid complaint
about many of the so-called “portable desktop
applications” being offered these days, but in
the case of Purr Data it is mitigated by the fact
that plain Pd-L2Ork is not exactly a slim pack-
age either.

Third, the browser engine has a much higher
memory footprint than Tcl/Tk which might be
an issue on embedded platforms with very tight
memory constraints.

5https://nwjs.io/
6https://electron.atom.io/

So far, none of these issues has turned out to
be a major road-block in practice. The most
serious issue we’re facing right now probably is
that externals using Pd’s Tcl/Tk facilities need
to have their GUI code rewritten to make it
work with Purr Data; this is a substantial un-
dertaking and thus hasn’t been done for all bun-
dled externals yet.

4.1 Implementation

Using JavaScript in lieu of Tcl as the GUI pro-
gramming language poses some challenges. Tcl
commands with Tk window strings are hard-
coded into the C source files of Pd. This means
that any port to a different toolkit must ei-
ther replace those commands with an abstract
interface, or write middleware that turns the
hard-coded Tcl strings into abstract commands.
Given the complexity of Tcl commands in both
the core and external libraries, that middleware
would essentially have to re-implement a large
part of the Tcl interpreter.

Consequently, Purr Data opted for the former
approach of directly implementing an abstract
interface. This takes the form of a JavaScript
API providing the necessary GUI tie-ins to the
engine and externals, which is called from the C
side using a new set of functions (gui vmess et
al) which replace the corresponding functions
of Pd’s C API (sys vgui etc.). As already
mentioned, this means that externals which use
these facilities need to have their GUI code
rewritten to make it work with the new GUI.
(Affected externals will work, albeit without
their GUI features.)

Adding to the porting difficulty is the fact
that Pd has no formal specification, and its GUI
interface follows no common design pattern for
2D graphics. For example, the graph-on-parent
window appears at a glance as a viewport that
clips to a specified bounding box. However, the
bounding box itself behaves inconsistently–for
built-in widgets like [hslider] or [bng] it clips
(per widget, not per pixel), but for graphed ar-
rays, data structure visualizations, and widget
labels it does no clipping at all.

To get to grips with these problems, Purr
Data’s JavaScript GUI implementation draws
and manipulates Pd patch windows using the
HTML5 API, which is widely documented and
used. The Pd canvas itself is implemented as an
SVG document. SVG was chosen because it is a
mature, widely-used 2D API. Also, larger can-
vas sizes have little to no performance impact

https://nwjs.io/
https://electron.atom.io/

on the responsiveness of the graphics. Since Pd
patches can be large, this makes SVG a better
choice for drawing a Pd canvas than the stan-
dard HTML5 canvas.

4.2 Leveraging HTML5 and SVG to
Improve Pd Data Structures

Purr Data employs a small subset of the SVG
specification to implement quite substantial im-
provements to data structure visualization. In-
heriting from a pre-existing standards-based 2D
API has several advantages over an ad-hoc ap-
proach. First, if implemented consistently, the
existing SVG documentation can be used to test
and teach the system. Second, it is not neces-
sary to immediately understand all the design
choices of the entire specification in order to im-
plement parts of it. Since those parts have been
used and tested in a variety of mature applica-
tions, it makes it easier to avoid mistakes that
often riddle designs made by developers who
aren’t graphics experts. Finally, there is less
risk of a standards-based API becoming aban-
doned than a more esoteric API.

To improve data structure visualizations, sev-
eral [draw] commands were added to support
the basic shape/object types in SVG. The cur-
rently supported types are circle, ellipse,
rect, line, polyline, polygon, path, image,
and g.7 Each has a number of methods
which map directly to SVG graphical attributes.
Methods were also added for Document Object
Model (DOM) events to trigger notifications to
the outlet of each object.

The screenshot in Fig. 2 shows the “SVG
tiger” drawn from a few hundred paths found
inside the [draw g] object. Even though
the drawing is complex, Purr Data caches the
bounding box for the tiger object to prevent
the hit-testing from causing dropouts. One can
mouse over the tiger and trigger real-time audio
synthesis.

It is also possible to set parameters for most
of the [draw] attributes. For instance, the mes-
sage opacity z can be sent to set a shape’s
opacity to be whatever the value of the field
z happens to be for a particular instance of
the data structure. As soon as the value of
z changes, Pd then automatically updates the
opacity of the corresponding shape accordingly.

7The latter g element denotes a “group”, which is
implemented as a special kind of subpatch that allows
the attributes of several [draw] commands to be changed
simultaneously.

Figure 2: Interactive SVG data structure.

4.3 Custom GUI Elements

As the SVG tiger example shows, Purr Data
makes it possible to bind HTML5 DOM events
to SVG shapes. Reporting the events is not en-
abled by default, but can be switched on by sim-
ply sending the appropriate Pd message to the
[draw] object, such as the mouseover 1 mes-
sage in Fig. 2. Each [draw] object has an out-
let which then emits messages when events like
mouse-over, movements and clicks are detected.

It goes without saying that this considerably
expands Pd’s capabilities to deal with user in-
teractions, e.g., if the user wants to modify ele-
ments of a graphical score in real-time. But it
also paves the way for enabling users to design
any kind of GUI element in plain Pd, without
having to learn a “real” programming language
and its frameworks.

For instance, Fig. 3 shows a collection of three
knobs drawn using the new SVG [draw] com-
mands, whose values (represented by the r field
in the nub data structure, which is linked to the
rotation angles of the knobs) can be manipu-
lated by dragging the mouse up or down. The
values can then be read from the data struc-
ture using Pd’s built-in [get] object and used
for whatever purpose, just like with any of the
built-in GUI elements.

Pd offers a rather limited collection of built-in
GUI elements to be used in patches, and extend-
ing that collection needs a developer proficient
in both C and Tcl/Tk. Purr Data’s new SVG
visualizations totally change the game, because
any Pd user can do them without specialized
programming knowledge. We thus expect the

Figure 3: Custom GUI elements.

facilities sketched out above to be used a lot
by Pd users who want to enrich their patches
with new kinds of GUI elements. As soon as it
becomes possible to conveniently package such
custom GUI elements as graph-on-parent ab-
stractions, we hope to see the proliferation of
GUI element libraries which can then be used by
Pd users and modified for their own purposes.

5 Getting Pd-L2Ork

The sources of Pd-L2Ork and Purr Data are
currently being maintained in two separate git
repositories.8 There are plans to merge the two
repositories again at some point, so that both
versions will become two branches in the same
repository, but this has not happened yet.

For Purr Data there is also Github mir-
ror available at https://agraef.github.io/
purr-data/. This is mainly used as a one-stop
shop to make it easy for users to get their hands
on the latest source and the available releases,
including pre-built packages for Linux, macOS
and Windows.

Because of Pd-L2Ork’s addons and its com-
prehensive set of bundled externals, the soft-
ware has a lot of dependencies and a fairly com-
plicated (and time-consuming) build process.
So, while the software can be built straight from
the source, it is usually much easier to use one
of the available binary packages:

• Virginia Tech’s official Pd-L2Ork packages
are available at http://l2ork.music.
vt.edu/main/make-your-own-l2ork/
software/.

8cf. https://github.com/pd-l2ork/pd and https:
//git.purrdata.net/jwilkes/purr-data

• Jonathan Wilkes’ Purr Data packages
can be found at https://github.com/
agraef/purr-data/releases.

• JGU also offers Pd-L2Ork and Purr Data
packages for Ubuntu and Arch Linux.
Web links and installation instructions
can be found at http://l2orkubuntu.
bitbucket.org/ and http://l2orkaur.
bitbucket.org/, respectively.

The JGU packages can be installed alongside
each other, so that you can run both “classic”
Pd-L2Ork and Purr Data on the same system.
(This may be useful, e.g., if you plan to use Pd-
L2Ork’s K12 mode which has not been ported
to Purr Data yet.) We mention in passing that
JGU’s binary package repositories also contain
Pd-L2Ork and Purr Data versions of the Faust
and Pure extensions which further enhance Pd’s
programming capabilities.9

6 Future Work

After Purr Data’s initial release as Pd-L2Ork
2.0 in February 2017, “classic” Pd-L2Ork has
become version 1.0 and went into maintenance
mode. While development will continue on the
Purr Data branch, we will keep the original Pd-
L2Ork available until all of Pd-L2Ork’s features
have been ported or have suitable replacements
in Purr Data.

Purr Data has matured a lot in the past few
months, but like any project of substantial size
and complexity it still has a few bugs and rough
edges we want to address after the initial re-
lease, in particular:

• Port the remaining missing features from
Pd-L2Ork (autotips and K12 mode).

• Port legacy Tcl code that is still present in
the GUI features of some of the 3rd party
externals.

• Some code reorganization is in order, along
with a complete overhaul of the current
build system.

One interesting direction for future research
is leveraging the new SVG visualizations as a
means to create custom GUI elements in plain
Pd, i.e., as ordinary Pd abstractions. This will
make it much easier for users to create their

9Grame’s Faust and JGU’s Pure are two functional
programming languages geared towards signal processing
and multimedia applications [7, 8].

https://agraef.github.io/purr-data/
https://agraef.github.io/purr-data/
http://l2ork.music.vt.edu/main/make-your-own-l2ork/software/
http://l2ork.music.vt.edu/main/make-your-own-l2ork/software/
http://l2ork.music.vt.edu/main/make-your-own-l2ork/software/
https://github.com/pd-l2ork/pd
https://git.purrdata.net/jwilkes/purr-data
https://git.purrdata.net/jwilkes/purr-data
https://github.com/agraef/purr-data/releases
https://github.com/agraef/purr-data/releases
http://l2orkubuntu.bitbucket.org/
http://l2orkubuntu.bitbucket.org/
http://l2orkaur.bitbucket.org/
http://l2orkaur.bitbucket.org/

own GUI elements, and will hopefully encourage
community contributions resulting in libraries
of custom GUI objects ready to be used and
modified by Purr Data users.

With the expansion onto other platforms, Pd-
L2Ork’s key challenge is ensuring sustainable
growth. As with any other open-source project
of its size and scope, this can only be achieved
through fostering greater community participa-
tion in its development and maintenance, so
please do not hesitate to contact us if you would
like to help!

7 Acknowledgements

The authors would like to thank the original
Pd author Miller Puckette, numerous commu-
nity members who have complemented the Pd
ecosystem with their own creativity and con-
tributions, including Hans Christoph Steiner
and Mathieu Bouchard. We would also like
to thank the L2Ork sponsors and stakeholders
without whose support Pd-L2Ork would have
never been possible nor sustainable.

References

[1] P. Brinkmann, P. Kirn, R. Lawler, C. Mc-
Cormick, M. Roth, and H.-C. Steiner. Em-
bedding pure data with libpd. In Proceed-
ings of the Pure Data Convention, volume
291. Citeseer, 2011.

[2] I. Bukvic, T. Martin, E. Standley, and
M. Matthews. Introducing L2ork: Linux
Laptop Orchestra. In Interfaces, pages
170–173, 2010.

[3] I. Bukvic, J. Wilkes, and A. Gräf.
Latest developments with Pd-L2Ork
and its development branch Purr-Data.
PdCon 2016, New York, NY, USA.
http://ico.bukvic.net/PDF/PdCon16_
paper_84.pdf, 2016.

[4] I. I. Bukvic. Pd-L2ork Raspberry Pi
Toolkit as a Comprehensive Arduino Alter-
native in K-12 and Production Scenarios.
In NIME, pages 163–166, 2014.

[5] I. I. Bukvic, L. Baum, B. Layman, and
K. Woodard. Granular Learning Objects
for Instrument Design and Collaborative
Performance in K-12 Education. In New
Interfaces for Music Expression, pages
344–346, Ann Arbor, Michigan, 2012.

[6] P. Davis and T. Hohn. Jack audio connec-
tion kit. In Proc. Linux Audio Conference,
LAC, volume 3, pages 245–256, 2003.

[7] A. Gräf. Signal Processing in the Pure Pro-
gramming Language. In Proceedings of the
7th International Linux Audio Conference,
pages 137–144, Parma, 2009. Casa della
Musica.

[8] A. Gräf. Pd-Faust: An integrated environ-
ment for running Faust objects in Pd. In
Proceedings of the 10th International Linux
Audio Conference, pages 101–109, Stanford
University, California, US, 2012. CCRMA.

[9] D. Iglesia. MobMuPlat (iOS application).
Iglesia Intermedia, 2013.

[10] K. Jolly. Usage of pd in spore and dark-
spore. In PureData Convention, 2011.

[11] J. Kincaid. RjDj Generates An Awe-
some, Trippy Soundtrack For Your Life.
http://social.techcrunch.com/2008/
10/13/rjdj-generates.

[12] C. McCormick, K. Muddu, and
A. Rousseau. PdDroidParty-Pure Data
patches on Android devices. Retrieved
January, 21, 2014.

[13] [PD-announce] MacOSX installers for pd
0.36 and pd 0.36 extended (CVS).

[14] pd forks WAS : Keyboard shortcuts
for ”nudge”, ”done editing”. http:
//permalink.gmane.org/gmane.comp.
multimedia.puredata.general/79646.

[15] M. Puckette. Pure Data: another inte-
grated computer music environment. In
Proceedings, International Computer Mu-
sic Conference, pages 37–41, 1996.

[16] M. Puckette. Max at seventeen. Computer
Music Journal, 26(4):31–43, 2002.

[17] TkPath. http://tclbitprint.
sourceforge.net/.

[18] Unity - Game Engine. https://unity3d.
com.

[19] B. B. Welch. Practical programming in Tcl
and Tk, volume 3. Prentice Hall Upper
Saddle River, 1995.

http://ico.bukvic.net/PDF/PdCon16_paper_84.pdf
http://ico.bukvic.net/PDF/PdCon16_paper_84.pdf
http://social.techcrunch.com/2008/10/13/rjdj-generates
http://social.techcrunch.com/2008/10/13/rjdj-generates
http://permalink.gmane.org/gmane.comp.multimedia.puredata.general/79646
http://permalink.gmane.org/gmane.comp.multimedia.puredata.general/79646
http://permalink.gmane.org/gmane.comp.multimedia.puredata.general/79646
http://tclbitprint.sourceforge.net/
http://tclbitprint.sourceforge.net/
https://unity3d.com
https://unity3d.com

	1 Introduction
	2 History and Motivation
	3 Implementation
	3.1 Engine
	3.2 Usability
	3.3 Object Libraries
	3.4 Introspection

	4 Purr Data a.k.a. ``The Cat''
	4.1 Implementation
	4.2 Leveraging HTML5 and SVG to Improve Pd Data Structures
	4.3 Custom GUI Elements

	5 Getting Pd-L2Ork
	6 Future Work
	7 Acknowledgements

