
VoiceOfFaust

Bart Brouns
studio magnetophon

Biesenwal 3
Maastricht, Netherlands, 6211 AD

bart@magnetophon.nl

Abstract

VoiceOfFaust turns any monophonic sound into a
synthesizer, preserving the pitch and spectral
dynamics of the input.
There are 7 synthesizer and two effect algorithms:

• a classic channel vocoder

• a couple of vocoders based on oscillators
with controllable formants:
◦ CZ resonant oscillators

◦ PAF oscillators

◦ FM oscillators

◦ FOF oscillators

• FM with modulation by the voice

• ring-modulation

• Karplus-Strong used as an effect

• Phase modulation used as an effect

Keywords

Synthesis, Signal Processing, Audio Plugins.

1 Introduction

VoiceOfFaust turns any monophonic sound into a
synthesizer, preserving the pitch and spectral
dynamics of the input. It is written in Faust [1], and
uses a pitch tracker in Pure Data [2].

It consists of:
• an external pitch tracker: helmholtz~ [3] by

Katja Vetter.
• a compressor/expander, called qompander

[4], ported to Faust.
There are 7 synthesizer and two effect algorithms:

• a classic channel vocoder

• a couple of vocoders based on oscillators
with controllable formants:
◦ CZ resonant oscillators

◦ PAF oscillators

◦ FM oscillators

◦ FOF oscillators

• FM with modulation by the voice

• ring-modulation

• Karplus-Strong used as an effect
• Phase modulation used as an effect

The features include:
• all oscillators are synchronized to a single

saw-wave, so they stay in phase, unless you
don't want them to

• powerful parameter mapping system lets
you set different parameter values for each
band, without having to set them all
separately

• formant compression/expansion: Make the
output spectrum more flat or more resonant,
at the twist of a knob.

• flexible in and output routing: change the
character of the synth.

• all parameters, including routing, but except
the octave, are step-less, meaning any
'preset' can morph into any other.

• multi-band deEsser and reEsser
• optionally use as a master-slave pair:

The master is a saw-oscilator driven by the
(external) pitchtacker, and the slaves
contain everything else, synced to the
master.
This makes it possible to run the slaves as
plugins.

• configuration file:
Through this file, lot's of options can be set
at compile time, allowing you to adapt the
synth to the amount of CPU power and
screen real-estate available.
Some of the highlights:

• number of bands of the vocoders
• number of output channels
• whether we want ambisonics output
• whether a vocoder has one set of

oscillators, or a separate set of oscillators
per output.

2 Vocoders

2.1 Common features of all vocoders

2.1.1 Parameter mapping system
The parameters for the vocoders use a very

flexible control system:
Each parameter has a bottom and a top knob,

where the bottom changes the value at the lowest
formant band, and the top the value at the highest
formant band.

The rest of the formant bands get values that are
evenly spaced in between.

For some of them that means linear spacing, for
others logarithmic spacing.

For even more flexibility there is a parametric
mid:

You set it's value and band number and the
parameter values are now:

• 'bottom' at the lowest band, going to:
• 'mid value' at band nr 'mid band', going to:
• 'top value' at the highest band.

Kind of like a parametric mid in equalizers.
If that's all a bit too much, just set ``para`` to 0

in the configuration file, and you'll have just the
top and bottom settings.

2.1.2 Formant compression/expansion
Scale the volume of each band relative to the
others:

• 0 = all bands at average volume
• 1 = normal
• 2 = expansion

expansion here means:
• the loudest band stays the same
• soft bands get softer

Because low frequencies contain more energy than
high ones, a lot of expansion will make your
sound duller.
To counteract that, you can apply a weighting
filter, settable from

• 0 = no weighting
• 1 = A-weighting
• 2 = ITU-R 468 weighting

2.1.3 DeEsser

To tame harsh esses, especially when using some
formant compression/expansion, there is a
deEsser:

It has all the usual controls, but since we already
are working with signals that are split up in bands,
with known volumes,
it was implemented rather differently:

• multiband, yet much cheaper,
• without additional filters, even for the

sidechain,
• and with a dB per octave knob for the

sidechain, from 0dB/oct (bypass), to
60dB/oct (fully ignore the lows).

It also has a (badly named) noise strenght
parameter: it uses the fidelity parameter from the
external pitchtracker to judge if a sound is an S.
When you turn it up, the deEsser gets disabled
when the pitchtracker claims a sound is pitched.
See [3] for more info.

2.1.4 ReEsser

Disabled by default, but can be enabled in the
configuration file.
It replaces or augments the reduced highs caused
by the deEsser.

2.1.5 DoubleOscs

This is a compile option, with two settings:
• 0 = have one oscillators for each formant

frequency
• 1 = creates a separate set of oscillators for

each output channel, with their phase
modulations reversed.

2.1.6 In and output routing

The vocoders can mix their bands together in
various ways:
We can send all the low bands left and the high
ones right, we can alternate the bands between left
and right, we can do various mid-side variations
we can even do a full Hadamard matrix.
All of these, and more, can be cross-faded
between.
In the classicVocoder, a similar routing matrix sits
between the oscillators and the filters.

2.1.7 Phase parameters
Since all1 formants are made by separate
oscillators that are synced to a single master
oscillator, you can set their phases relative to each
other.
This allows them to sound like one oscillator
when they have static phase relationships, and to
sound like many detuned oscillators when their
phases are moving.

1 except for the classicVocoder.

Together with the output routing, it can also create
interesting cancellation effects.
For example, with the default settings for the
FMvocoder, the formants are one octave up from
where you'd expect them to be.
When you change the phase or the output routing,
they drop down.

These settings are available:
• static phases
• amount of modulation by low pass filtered

noise
• the cutoff frequency of the noise filters

2.2 Features of individual vocoders

2.2.1 ClassicVocoder

Block-diagram:
https://magnetophon.github.io/VoiceOfFaust/imag
es/classicVocoder-svg/process.svg

A classic channel vocoder, with:
• a "super-saw" that can be cross-faded to a

“super-pulse", free after Adam Szabo [5].
 * flexible Q and frequency setting for the filters
 * an elaborate feedback and distortion matrix
around the filters

The gui of the classicVocoder has two sections:
First oscillators, containing the parameters for the
carrier oscillators.
These are regular virtual analog oscillators, with
the following parameters:

• cross-fade between oscillators and noise
• cross-fade between sawtooth and pulse

wave
• width of the pulse wave
• mix between a single oscilators and

multiple detuned ones
• detuning amount

Second filters, containing the parameters for the
synthesis filters:

• bottom, mid and top set the resonant
frequencies

• Q for bandwidth
• a feedback matrix. each filter gets fed back

a variable amount of:
◦ itself
◦ it's higher neighbor
◦ it's lower neighbor
◦ all other filters
◦ distortion amount
◦ DC offset

2.2.2 CZvocoder

Block-diagram:
https://magnetophon.github.io/VoiceOfFaust/imag
es/czVocoder-svg/process.svg

This is the simplest of the vocoders made out of
formant oscilators.
The oscillators where ported from a pd patch by
Mike Moser-Booth [6].

You can adjust:
• the formant frequencies
• the phase parameters

2.2.3 PAFvocoder
Block-diagram:
https://magnetophon.github.io/VoiceOfFaust/imag
es/PAFvocoder-svg/process.svg

The oscillators where ported from a pd patch by
Miller Puckette [7].

It also has frequencies and phases, but adds index
for brightness.

2.2.4 FMvocoder

Block-diagram:
https://magnetophon.github.io/VoiceOfFaust/imag
es/FMvocoder-svg/process.svg

The oscillators where based on code by Chris
Chafe [8].

Same parameters, different sound.

2.2.5 FOFvocoder

Block-diagram:
https://magnetophon.github.io/VoiceOfFaust/imag
es/FOFvocoder-svg/process.svg

Original idea by Xavier Rodet [9].
based on code by Michael Jørgen Olsen [10].
Also has frequencies and phases, but adds:

• skirt and decay:
Two settings that influence the brightness
of each band

• Octavation index
Normally zero. If greater than zero,
lowers the effective frequency by
attenuating odd-numbered sinebursts.

https://magnetophon.github.io/VoiceOfFaust/images/classicVocoder-svg/process.svg
https://magnetophon.github.io/VoiceOfFaust/images/classicVocoder-svg/process.svg
https://magnetophon.github.io/VoiceOfFaust/images/FOFvocoder-svg/process.svg
https://magnetophon.github.io/VoiceOfFaust/images/FOFvocoder-svg/process.svg
https://magnetophon.github.io/VoiceOfFaust/images/FMvocoder-svg/process.svg
https://magnetophon.github.io/VoiceOfFaust/images/FMvocoder-svg/process.svg
https://magnetophon.github.io/VoiceOfFaust/images/PAFvocoder-svg/process.svg
https://magnetophon.github.io/VoiceOfFaust/images/PAFvocoder-svg/process.svg
https://magnetophon.github.io/VoiceOfFaust/images/czVocoder-svg/process.svg
https://magnetophon.github.io/VoiceOfFaust/images/czVocoder-svg/process.svg

Whole numbers are full octaves, fractions
transitional.
Inspired by an algorithm in Csound [11].

3 Other synthesizers

These are all synths that are not based on
vocoders.

3.1 Features of individual synths

3.1.1 FMsinger
Block-diagram:
https://magnetophon.github.io/VoiceOfFaust/imag
es/FMsinger-svg/process.svg

A sine wave that modulates its frequency with the
input signal.
There are five of these, one per octave, and each
one has:

• volume
• modulation index
• modulation dynamics

This fades between 3 settings:
◦ no dynamics: the amount of

modulation stays constant with
varying input signal

◦ normal dynamics: more input volume
equals more modulation

◦ inverted dynamics: more input equals
less modulation.

3.1.2 CZringmod

Block-diagram:
https://magnetophon.github.io/VoiceOfFaust/imag
es/CZringmod-svg/process.svg

Ringmodulates the input audio with emulations of
Casio CZ oscillators.
Again five octaves, with each octave containing
three different oscillators:

• square and pulse, each having volume and
index (brightness) controls

• reso, having a volume and a resonance
multiplier:
This is a formant oscillator, and it's
resonant frequency is multiplied by the
formant setting top right.
It is intended to be used with an external
formant tracker.

• There is a global width parameter that
controls a delay on the oscillators for one
output.

The delay time is relative to the
frequency.

Because this delay is applied to just the
oscillators, and before the

ringmodulation, the sound of both output
channels arrives simultaneously.

This creates a mono-compatible widening
of the stereo image.

3.1.3 KarplusStrongSinger

Block-diagram:
https://magnetophon.github.io/VoiceOfFaust/imag
es/KarplusStrongSinger-svg/process.svg

This takes the idea of a Karplus Strong algorithm
[12], but instead of noise, it uses the input signal.
The feedback is ran trough an allpass filter,
modulated with an LFO; adapted from the
nonLinearModulator in instrument.lib.
To keep the level from going out of control, there
is a limiter in the feedback path.
Parallel to the delay is a separate
nonLinearModulator.
Globally you can set:

• octave
• output volume
• threshold of the limiter

For the allpass filters you can set:
• amount of phase shift
• difference in phase shift between left and

right (yeah, I lied, there are two of
everything)

• amount of modulation by the LFO
• frequency of the LFO, relative to the main

pitch
• phase offset between the left and right

LFO's.
To round things off there is a volume for the dry
path and a feedback amount for the delayed one.

3.1.4 KarplusStrongSingerMaxi
Block-diagram:
https://magnetophon.github.io/VoiceOfFaust/imag
es/KarplusStrongSingerMaxi-svg/process.svg

To have more voice control of the spectrum, this
one has a kind of vocoder in the feedback path.
Since we don't want the average volume of the
feedback path changing much, only the volumes
relative to the other bands, the vocoder is made
out of equalizers, not bandpass filters.
You can adjust it's

• strength: from bypass to 'fully equalized'

https://magnetophon.github.io/VoiceOfFaust/images/KarplusStrongSingerMaxi-svg/process.svg
https://magnetophon.github.io/VoiceOfFaust/images/KarplusStrongSingerMaxi-svg/process.svg
https://magnetophon.github.io/VoiceOfFaust/images/KarplusStrongSinger-svg/process.svg
https://magnetophon.github.io/VoiceOfFaust/images/KarplusStrongSinger-svg/process.svg
https://magnetophon.github.io/VoiceOfFaust/images/CZringmod-svg/process.svg
https://magnetophon.github.io/VoiceOfFaust/images/CZringmod-svg/process.svg
https://magnetophon.github.io/VoiceOfFaust/images/FMsinger-svg/process.svg
https://magnetophon.github.io/VoiceOfFaust/images/FMsinger-svg/process.svg

• cut/boost; steplessly vary between
◦ -1 = all bands have negative gain,

except the strongest, which is at 0
◦ 0 = the average gain of the bands is 0.
◦ +1 = the all bands have positive gain,

except the weakest, which is at 0
• top and bottom frequencies
• Q factor

4 Master-slave

This is a workaround for the need for an
external pitchtracker, making it possible to use the
synths and effects as plugins.
It has the nice side effect that your sounds become
fully deterministic:
because a pitchtracker will always output slightly
different data, or at least at slightly different
moments relative to the audio, the output audio
can sometimes change quite a bit from run to run.
The master is a small program that receives the
audio and the OSC messages from the external
pitch tracker, and outputs:

• a copy of the input audio
• a saw wave defining the pitch and phase
• the value of fidelity, from the pitch

tracker, as audio.
The slaves are synths and effects that input the
above three signals.
The outputs of the master can be recorded into a
looper or DAW, and be used as song building
blocks, without needing the pitch tracker.
This makes it possible to switch synths, automate
parameters, etc.

5 Strengths and weaknessesses of Faust

The Faust language has some big advantages.
The common perks of the language apply. For me,
the biggest ones are:

• Quick implementation of ideas.
• If it sounds right, it is right. There won’t

be any crashes, memory leaks or other
bugs.

• Write once, deploy everywhere.
• The block diagrams help with debugging

and documentation.
• Fast running code.
• Automatic parrallelisation.

In this project it was also very helpful to be able
to easily parameterize things like the number of
bands. Related: the input and output routing
wouldn’t be nearly as easy and fun to implement

in most languages, as they lean heavily on Fausts
splitting and combinatory operators.

Since this idea has been implemented in
PureData earlier, it makes sense to mention two
big advantages over that:

1. Text-interface, enabling quicker notation
of ideas, version-control and a mouseless
workflow.

2. Single sample feedback loops, as used in
the classicVocoder.

The downsiders of Faust to me are a steep
learning curve and error messages that are often
very verbose and unclear.

6 Use cases

The author has used VoiceOfFaust mostly for
voice transformation in a musical context, but it
has also come in handy to turn a bass-guitar into a
synth [14].

7 Deployment

VoiceOfFaust heavily leans on knowing the
pitch of the input signal. Since it’s not yet
possible to do decent pitchtracking in Faust, an
external pitchtracker which sends the pitch trough
OSC is used.

This limits the usable architectures to the ones
supporting OSC.

Specifically, it would be nice to have
VoiceOfFaust as a plugin within a DAW, but that
is not directly possible.

The master slave architecture is a usable
workaround.

To compile VoiceOfFaust, run one of the
compilation scripts that support OSC, for
example:

faust2jack -osc FMvocoder.dsp
To run it, you can use one of the scripts in the

launchers directory, for example:
./FMvocoder_PT
This will start puredata with the pitchtracker

patch plus a synth, and connect everything trough
jack.

8 Acknowledgements

Many thanks to the developers of Faust [1] and
Pure Data [2] for making dsp so accesable yet
powerfull.

References

[1] http://faust.grame.fr

[2] https://puredata.info
[3]

http://www.katjaas.nl/helmholtz/helmholtz.html
[4]

http://www.katjaas.nl/compander/compander.ht
ml

[5]
https://www.nada.kth.se/utbildning/grukth/exjob
b/rapportlistor/2010/rapporter10/szabo_adam_10
131.pdf

[6]
http://forum.pdpatchrepo.info/topic/5992/casio-
cz-oscillators

[7] http://msp.ucsd.edu/techniques/v0.11/book-
html/node96.html
[8] http://chrischafe.net/glitch-free-fm-vocal-

synthesis
[9]

http://anasynth.ircam.fr/home/english/media/sin
ging-synthesis-chant-program

[10]
https://ccrma.stanford.edu/~mjolsen/220a/fp/Fof
let.dsp

[11]
https://csound.github.io/docs/manual/fof2.html

[12] https://en.wikipedia.org/wiki/Karplus
%E2%80%93Strong_string_synthesis

[13]
https://github.com/magnetophon/VoiceOfFaust

[14]
http://magnetophon.nl/sounds/BucketBoyz/Shini
ngBrightLight.mp3

http://magnetophon.nl/sounds/BucketBoyz/ShiningBrightLight.mp3
http://magnetophon.nl/sounds/BucketBoyz/ShiningBrightLight.mp3
https://github.com/magnetophon/VoiceOfFaust
https://en.wikipedia.org/wiki/Karplus%E2%80%93Strong_string_synthesis
https://en.wikipedia.org/wiki/Karplus%E2%80%93Strong_string_synthesis
https://csound.github.io/docs/manual/fof2.html
https://ccrma.stanford.edu/~mjolsen/220a/fp/Foflet.dsp
https://ccrma.stanford.edu/~mjolsen/220a/fp/Foflet.dsp
http://anasynth.ircam.fr/home/english/media/singing-synthesis-chant-program
http://anasynth.ircam.fr/home/english/media/singing-synthesis-chant-program
http://chrischafe.net/glitch-free-fm-vocal-synthesis
http://chrischafe.net/glitch-free-fm-vocal-synthesis
http://msp.ucsd.edu/techniques/v0.11/book-html/node96.html
http://msp.ucsd.edu/techniques/v0.11/book-html/node96.html
http://forum.pdpatchrepo.info/topic/5992/casio-cz-oscillators
http://forum.pdpatchrepo.info/topic/5992/casio-cz-oscillators
https://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2010/rapporter10/szabo_adam_10131.pdf
https://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2010/rapporter10/szabo_adam_10131.pdf
https://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2010/rapporter10/szabo_adam_10131.pdf
http://www.katjaas.nl/compander/compander.html
http://www.katjaas.nl/compander/compander.html
http://www.katjaas.nl/helmholtz/helmholtz.html
https://puredata.info/
http://faust.grame.fr/

