
Teaching Sound Synthesis in C/C++ on the Raspberry Pi

Henrik von Coler and David Runge
Audio Communication Group, TU Berlin

voncoler@tu-berlin.de
david.runge@campus.tu-berlin.de

Abstract

For a sound synthesis programming class in C/C++,
a Raspberry Pi 3 was used as runtime and develop-
ment system. The embedded system was equipped
with an Arch Linux ARM, a collection of libraries
for sound processing and interfacing, as well as with
basic examples. All material used in and created
for the class is freely available in public git reposito-
ries. After a unit of theory on sound synthesis and
Linux system basics, students worked on projects
in groups. This paper is a progress report, point-
ing out benefits and drawbacks after the first run of
the seminar. The concept delivered a system with
acceptable capabilities and latencies at a low price.
Usability and robustness, however, need to be im-
proved in future attempts.

Keywords

Jack, Raspberry Pi, C/C++ Programming, Educa-
tion, Sound Synthesis, MIDI, OSC, Arch Linux

1 Introduction

The goal of the seminar outlined in this pa-
per was to enable students with different back-
grounds and programming skills the develop-
ment of standalone real-time sound synthesis
projects. Such a class on the programming
of sound synthesis algorithms is, among other
things, defined by the desired level of depth in
signal processing. It may convey an application-
oriented overview or a closer look at algorithms
on a sample-wise signal processing level, as in
this case. Based on this decision, the choice
of tools, respectively the programming environ-
ment should be made.

Script languages like Matlab or Python are
widely used among students and offer a comfort-
able environment, especially for students with-
out a background in computer science. They
are well suited for teaching fundamentals and
theoretical aspects of signal processing due to
advanced possibilities of debugging and visual-
isation. Although real-time capabilities can be

added, they are not considered for exploring ap-
plied sound synthesis algorithms in this class.

In a more application-based context, graphi-
cal programming environments like Pure Data
(Pd), MAX MSP or others would be the first
choice. They allow rapid progress and interme-
diate results. However, they are not the best
platform to enhance the knowledge of sound
synthesis algorithms on a sample-wise level by
nature.

C/C++ delivers a reasonable compromise be-
tween low level access and the comfort of using
available libraries for easy interfacing with hard-
ware. For using C/C++ in the development
of sound synthesis software, a software devel-
opment kit (SDK) or application programming
interface (API) is needed in order to offer access
to the audio hardware.

Digital audio workstations (DAW) use plug-
ins programmed with SDKs and APIs like Stein-
berg’s VST, Apple’s Audio Units, Digidesign’s
RTAS, the Linux Audio Developer’s Simple
Plugin API (LADSPA) and its successor LV2,
which offer quick access to developing audio
synthesis and processing units. A plugin-host
is necessary to run the resulting programs and
the structure is predefined by the chosen plat-
form. The JUCE framework [34] offers the
possibility of developing cross platform applica-
tions with many builtin features. Build targets
can be audio-plugins for different systems and
standalone applications, including Jack clients,
which would present an alternative to the cho-
sen approach.

Another possibility is the programming of
Pd externals in the C programming language
with the advantage of quick merging of the self-
programmed components with existing Pd in-
ternals. FAUST [6] also provides means for cre-
ating various types of audio plugins and stan-
dalone applications. Due to a lack in functional
programming background it was not chosen.



For various reasons we settled for the Jack
API [18] to develop command line programs on
a Linux system.

• Jack clients are used in the research on bin-
aural synthesis and sound field synthesis,
for example by the WONDER interface [15]
or the SoundScape Renderer [14]. Results
of the projects might thus be potentially
integrated into existing contexts.

• Jack clients offer quick connection to other
clients, making them as modular as audio-
plugins in a DAW.

• The Jack API is easy to use, even for be-
ginners. Once the main processing func-
tion is understood, students can immedi-
ately start inserting their own code.

• The omission of a graphical user interface
for the application leaves more space for
focusing on the audio-related problems.

• The proposed environment is independent
of proprietary components.

A main objective of the seminar was to equip
the students with completely identical systems
for development. This avoids troubles in han-
dling different operating systems and hardware
configurations. Since no suitable computer pool
was available, we aimed at providing a set of
machines as cheap as possible for developing,
compiling and running the applications. The
students were thus provided with a Raspberry
Pi 3 in groups of two. Besides being one of the
cheapest development systems, it offers the ad-
vantage of resulting in a highly portable, quasi
embedded synthesizer for the actual use in live
applications.

The remainder of this paper is organized as
follows: Section 2 introduces the used hard- and
software, as well as the infrastructure. Section 3
presents the concept of the seminar. Section 4
briefly summarizes the experiences and evalu-
ates the concept.

2 Technical Outline

2.1 Hardware

A Raspberry Pi 3 was used as development
and runtime system. The most recent version
at that time was equipped with 1.2GHz 64-bit
quad-core ARMv8 CPU, 802.11n Wireless LAN,
a Bluetooth adapter, 1GB RAM, 4 USB ports
40 GPIO pins and various other features [11].

Unfortunately the on-board audio interface
of the Raspberry Pi could not be configured
for real-time audio applications. It does not
feature an input and the Jack server could
only be started with high latencies. After try-
ing several interfaces, a Renkforce USB-Audio-
Adapter was chosen, since it delivered an ac-
ceptable performance at a price of 10 e. The
Jack server did perform better with other inter-
faces, yet at a higher price and with a larger
housing.

Students were equipped with MIDI interfaces
from the stock of the research group and private
devices. The complete cost for one system, in-
cluding the Raspberry Pi 3 with housing, SD
card, power adapter and the audio interface,
were thus kept at about 70 e(vs. the integrated
low-latency platform bela[5], that still ranks at
around 120 eper unit).

2.2 Operating System

First tests on the embedded system involved
Raspbian [12], as it is highly integrated and
has a graphical environment preinstalled, that
eases the use for beginners. Integration with
the libraries used for the course proved to be
more complicated however, as they needed to
be added to the software repository for the ex-
amples.

A more holistic approach, integrating the op-
erating system, was aimed at, in order to leave
as few dependencies on the students’ side as pos-
sible and not having to deal with the hosting of
a custom repository of packages for Raspbian.
Due to previous experience with low latency se-
tups using Arch Linux [7], Arch Linux ARM
[2] was chosen. With its package manager pac-
man [9] and the Arch Build System [1] an easy
system-wide integration of all used libraries and
software was achieved by providing them as pre-
installed packages (with them either being avail-
able in the standard repositories, or the Arch
User Repository[3]). Using Arch Linux ARM,
it was also possible to guarantee a systemd [13]
based startup of the needed components, which
is further described in Section 2.5. At the time
of preparation for the course, the 64bit vari-
ant (AArch64) - using the mainline kernel - was
not available yet. At the time of writing it is
still considered experimental, as some vendor
libraries are not yet available for it. Instead the
ARMv7 variant of the installation image was
used, which is the default for Raspberry Pi 2.



2.3 Libraries

All libraries installed on the system are listed
in Tab. 1. For communicating with the au-
dio hardware, the Jack API was installed. The
jackcpp framework adds a C++ interface to
Jack. Additional libraries allowed the handling
of audio file formats, ALSA-MIDI interfacing,
Open Sound Control, configuration files and
Fast Fourier Transforms.

Table 1: Libraries installed on the development
system

Library Ref. Purpose

jack2 [18] Jack audio API

jackcpp [26] C++ wrapper for jack2

sndfile [19] Read and write audio files

rtmidi [32] Connect to MIDI devices

liblo [23] OSC support

yaml [20] Configuration files

fftw3 [22] Fourier transform

boost [4] Various applications

2.4 Image

The image for the system is available for down-
load1 and can be asked for by mailing to the
authors in case of future unavailability. Installa-
tion of the image follows the standard procedure
of an Arch Linux ARM installation for Rasp-
berry Pi 3, using the blockwise copy tool dd,
which is documented in the course’s git reposi-
tory [31].

2.5 System Settings

The most important goal was to achieve a
round-trip latency below 10 ms. This would not
be sufficient for real-time audio applications in
general, but for teaching purposes. With the
hardware described in Section 2.1, stable Jack
server command line options were evaluated,
leading to a round-trip latency of 2.9 ms:

/usr/bin/jackd -R \K
-p 512 \
-d alsa \

-d hw:Device \
-n 2 \
-p 64 \
-r 44100

1https://www2.ak.tu-berlin.de/~drunge/
klangsynthese

As these settings were not realizable with the
internal audio card, the snd-bcm2835 module -
the driver in use for it - was blacklisted using
/etc/modprobe.d/*, to not use the sound device
at all.

For automatic start of the low-latency au-
dio server and its clients, systemd user ser-
vices were introduced, that follow a user session
based setup. The session of the main system
user is started automatically as per systemd’s
user@.service. This is achieved by enabling the
linger status of said user with the help of loginctl
[8], which activates its session during boot and
starts its enabled services.
A specialized systemd user service [30] allows
for Jack’s startup with an elevated CPU sched-
uler without the use of dbus [21]. The stu-
dents’ projects could be automatically started
as user services, that rely on the audio server
being started by enabling services such as this
example:

[Unit]
Description=Example project
After=jack@rpi -usb -44100. service
[Service]
ExecStart =/path/to/executable \

parameter1 \
paramter2

Restart=on -failure
[Install]
WantedBy=default.target

2.6 Infrastructure

For allowing all students in the class the access
via SSH, a WIFI was set up, providing fixed
IP addresses for all Raspberry Pis. Network
performance showed to be insufficient to handle
all participants simultaneously, though. Thus,
additional parallel networks were installed.

For home use, students were instructed to
provide a local network with their laptops, or
using their home network over WiFi or cable.
Depending on their operating system, this was
more or less complicated.

3 The Seminar

The seminar was addressed to graduate stu-
dents with different backgrounds, such as com-
puter science, electrical engineering, acoustics
and others. One teacher and one teaching assis-
tant were involved in the planning, preparation
and execution of the classes.

The course was divided into a theoretical and
a practical part. In the beginning, theory and
basics where taught in mixed sessions. The fi-



nal third of the semester was dedicated to su-
pervised project work.

3.1 System Introduction

Students were introduced to the system by giv-
ing an overview over the tools needed and pre-
senting the libraries with their interfaces. Users
of Linux, Mac and Windows operating systems
took part in the class. Since many students
lacked basic Linux skills, first steps included us-
ing Secure Shell (SSH) to access the devices,
which proved to be hard for attendees without
any knowledge on the use of the command-line
interface. Windows users were aided to install
and use PuTTY [10] for the purpose of connect-
ing, as there is no native SSH client. After two
sessions, each group was able to reach the Rasp-
berry Pi in class, as well as at home.

3.2 Sound Synthesis Theory

Sound synthesis approaches were introduced
from an algorithmic point of view, showing ex-
amples of commercially available implementa-
tions, also regarding their impact on music pro-
duction and popular culture. Students were
provided with ready-to-run examples from the
course repository for some synthesis approaches,
as well as with tasks for extending these.

Important fundamental literature was pro-
vided by Zölzer [35], Pirkle [27] and Roads [29].
The taxonomy of synthesis algorithms proposed
by Smith [33] was used to structure the outline
of the class, as follows.

A section on Processed Recording dealt with
sampling and sample-based approaches, like
wave-table synthesis, granular synthesis, vector
synthesis and concatenative synthesis.

Subtractive synthesis and analog modeling
were treated as the combination of the basic
units oscillators, filters and envelopes. Fil-
ters were studied more closely, considering IIR
and FIR filters and design methods like bilin-
ear transform. A ready to run biquad example
was included and a first order low-pass was pro-
grammed in class.

Additive Synthesis and Spectral Modeling
were introduced by an analysis-resynthesis pro-
cess of a violin tone in the SMS model [25], con-
sidering only the harmonic part.

Physical Modeling was treated for plucked
strings, starting with the Karplus-Strong algo-
rithm [17], advancing to bidirectional [24].

FM Synthesis [16] was treated as a repre-
sentative of abstract algorithms in the class.
The concept was mainly taught by a closer look

at the architecture and programming of the
Yamaha DX7 synthesizer.

3.3 Projects

Out of the 35 students who appeared to the first
meetings, 18 worked on projects throughout the
whole semester. It should be noted that (with
one exception) only Linux and MAC users con-
tinued.

No restrictions were made regarding the
choice of the topic, exept that it should result
in an executable program on the Raspberry PI.
The student projects included:

• A vector synthesis engine, allowing the
mixture of different waveforms with a suc-
ceeding filter section

• A subtractive modeling synth with modu-
lar capabilities

• A physical string model, based on the
Karplus-Strong Extended with dispersion
filter

• A sine-wave Speech Synthesis [28] effect,
which includes a real-time FFT

• A guitar-controlled subtractive synthesizer,
using zero-crossing rate for pitch detection

• A wave-digital-filter implementation with
sensor input from the GPIOs

In order to provide a more suitable platform
for running embedded audio applications, one
group used buildroot2 to create a custom oper-
ating system.

4 Conclusions

The use of the Raspberry Pi 3 for the program-
ming of Jack audio applications showed to be a
promising approach. A system with acceptable
capabilities and latencies could be provided at
a low price. Accessibility and stability, how-
ever, need to be improved in future versions: A
considerable amount of time was spent work-
ing on these issues in class and the progress in
the projects was therefore delayed considerably.
The overhead in handling Linux showed to be a
major problem for some students and probably
caused some people to drop out. A possible step
would be to provide a set with monitor, key-
board and mouse, as this would increase acces-
sibility. The stability of the Jack server needs to
be worked on, as sometimes the hardware would

2https://buildroot.org



not be started properly, leading to crashing Jack
clients.

In future seminars, which are likely to be con-
ducted after these principally positive experi-
ences, most of the issues should be worked out
and the image, as well as the repository will
have been improved.

References
[1] Arch Build System - ArchWiki. https:

//wiki.archlinux.org/index.php/Arch_
Build_System.

[2] Arch Linux ARM homepage. https://www.
archlinuxarm.org/.

[3] Arch User Repository. https://aur.
archlinux.org/.

[4] Boost C++ Libraries - Homepage. http://
www.boost.org.

[5] buildroot homepage. https://bela.io.

[6] FAUST - Homepage. http://faust.grame.
fr/.

[7] Linux Audio Conference 2015 - Workshop:
Arch Linux as a lightweight audio platform
- Slides. http://lac.linuxaudio.org/2015/
download/lac2015_arch_slides.pdf.

[8] loginctl man page. https://www.
freedesktop.org/software/systemd/man/
loginctl.

[9] Pacman homepage. https://www.archlinux.
org/pacman/.

[10] PuTTY Homepage. http://www.putty.org/.

[11] Raspberry PI Homepage. https:
//www.raspberrypi.org/products/
raspberry-pi-3-model-b/.

[12] Raspbian homepage. https://www.raspbian.
org/.

[13] systemd homepage. https://www.
freedesktop.org/wiki/Software/systemd/.

[14] Jens Ahrens, Matthias Geier, and Sascha Spors.
The soundscape renderer: A unified spatial au-
dio reproduction framework for arbitrary ren-
dering methods. In Audio Engineering Soci-
ety Convention 124. Audio Engineering Society,
2008.

[15] Marije AJ Baalman. Updates of the wonder
software interface for using wave field synthe-
sis. LAC2005 Proceedings, page 69, 2005.

[16] John M Chowning. The synthesis of complex
audio spectra by means of frequency modula-
tion. Journal of the audio engineering society,
21(7):526–534, 1973.

[17] Julius O. Smith David A. Jaffe. Extensions of
the Karplus-Strong Plucked-String Algorithm.
Computer Music Journal, 7(2):56–69, 1983.

[18] Paul Davies. JACK API. http://www.
jackaudio.org/.

[19] Erik de Castro Lopo. Libsndfile. http://www.
mega-nerd.com/libsndfile/.

[20] Clark C. Evans. YAML: YAML Ain’t Markup
Language. http://yaml.org/.

[21] Free Desktop Foundation. dbus home-
page. https://wiki.freedesktop.org/www/
Software/dbus/.

[22] Matteo Frigo and Steven G. Johnson. FFTW
Fastest Fourier Transform in the West. http:
//www.fftw.org/.

[23] Steve Harris and Stephen Sinclair. liblo Home-
page: Lightweight OSC implementation. http:
//liblo.sourceforge.net/.

[24] Matti Karjalainen, Vesa Välimäki, and Tero
Tolonen. Plucked-string models: From the
Karplus-Strong algorithm to digital wave-
guides and beyond. Computer Music Journal,
22(3):17–32, 1998.

[25] Scott N. Levine and Julius O. Smith. A
Sines+Transients+Noise Audio Representation
for Data Compression and Time/Pitch Scale
Modi cations. Proceedings of the 105th Audio
Engineering Society Convention, 1998.

[26] Alex Norman. JackCpp. http://www.x37v.
info/projects/jackcpp/.

[27] Will Pirkle. Designing Software Synthesizer
Plug-Ins in C++. Focal Press, 2014.

[28] Robert E Remez, Philip E Rubin, David B
Pisoni, Thomas D Carrell, et al. Speech percep-
tion without traditional speech cues. Science,
212(4497):947–949, 1981.

[29] Curtis Roads. The computer music tutorial.
MIT press, 1996.

[30] David Runge. uenv homepage. https://git.
sleepmap.de/software/uenv.git/about/.

[31] David Runge and Henrik von Coler. AK-
Klangsynthese Repository. https://gitlab.
tubit.tu-berlin.de/henrikvoncoler/
Klangsynthese_PI.

[32] Gary P. Scavone. RtMidi. http://www.music.
mcgill.ca/~gary/rtmidi/.

[33] Julius O. Smith. Viewpoints on the History of
Digital Synthesis. In Proceedings of the Inter-
national Computer Music Conference, pages 1–
10, 1991.

[34] Jules Storer. JUCE. https://www.juce.com/.

[35] Udo Zoelzer, editor. DAFX: Digital Audio Ef-
fects . John Wiley & Sons, Inc., New York, NY,
USA, 2 edition, 2011.


