
Linux Audio Conference 2017

Proceedings

Conferences - Workshops- Concerts - Installations

May 18-21, 2017

Saint-Etienne University

C I EREC

Foreword

Welcome to Linux Audio Conference 2017 in Saint-Etienne!

The feld of computer music and digital audio is rich of several well-known scientifc conferences.
But the Linux Audio Conference is very unique in this landscape! Its focus on Linux-based (but not
only) free/open-source software development and its friendly atmosphere are perfect to speak code
from breakfast to late at night, to demonstrate early prototypes of software that still crash, and more
generally to exchange audio and music related technical ideas without fear. LAC offers also a unique
opportunity for users and developers to meet, to discuss features, to provide feedback, to suggest
improvements, etc.

LAC 2017 is the frst edition to take place in France. It is co-organized by the University Jean Monnet
(UJM) in Saint-Etienne and GRAME in Lyon.

GRAME is a National Center for Music Creation, an institution devoted to contemporary music and
digital art, scientifc research, and technological innovation. In 2016 the center hosted 26 guest
composers and artists, produced 88 musical events and 25 exhibitions in 20 countries. GRAME is the
organizer of the Biennale Musiques en Scène festival, one of France’s largest international festival of
contemporary and new music with guest artists ranging from Peter Eötvös, Kaija Saariaho, Michael
Jarrell, Heiner Goebbels, Michel van der Aa, etc. GRAME develops research activities in the feld of
real-time systems, music representation, and programming languages. Since 1999 all software
developed by GRAME are open source and in most cases multiplatform (Linux, macOS, Windows,
Web, Android, iOS, ...).

UJM is part of the University of Lyon, a consortium of higher-education and research institutions
located within the two neighboring cities of Lyon and Saint-Étienne. The University of Lyon-Saint-
Etienne is the main French higher-education and scientifc center outside the Paris metropolitan area,
composed of 4 public universities, 7 high schools (grandes écoles) and the CNRS (the French
National Center for Scientifc Research), forming a group of 12 member institutions. The University
of Lyon also assembles 19 associated institutions, offering specifc disciplinary training programs.
Altogether, the Université de Lyon regroups 137,600 students and 168 public laboratories.

The Université Jean Monnet (UJM), founded in 1969, is a comprehensive university enrolling some
20,000 students, about 15% international students from 111 countries. A high proportion of
international students come from Africa and Asia.

The university is composed of 5 faculties (arts, letters and languages, humanities and social sciences,
law, sciences and technology, and medicine), four institutes: Institut Supérieur d’Economie
d’Administration et de Gestion, Telecom Saint-Etienne, and University Institutes of Technology
(IUTs) in Saint-Etienne and Roanne.

The CIEREC is a research center devoted to the feld of contemporary expression, which brings
together professors, researchers and PhD students in aesthetics and sciences of art, plastics arts,
design, digital arts, literature, linguistics and musicology. Its main feld is the arts and literature of the
twentieth and twenty-frst centuries.

The Music Department offers graduate, post-graduate and doctoral training in music and musi-
cology. In the feld of technologies, it proposes, since 2011, a Professional Master's Degree in
Computer Music (RIM) that is unique in France, in collaboration with GRAME, with the main audio
production studio of Saint-Etienne (Le FIL) and with the National Superior Conservatory of Music in
Lyon.

In 2016, we have created another Professional Master for Digital Arts (RAN). The Professional
Masters of RIM & RAN are aimed at developing students’ applied knowledge and understanding of
electronic and digital technologies for the creation and they prepare to the professions of "Producer in
Computer Music (RIM - Réalisateur en Informatique Musicale) and in Digital Arts (RAN -
Réalisateur en Arts Numériques). These producers are direct actors in musical and artistic
productions, and they are at the interface between software developers, applied computer scientists,
composers, artists ... and all people likely to integrate video, image and sound in their activities. Most
courses are available in English (see http://musinf.univ-st-etienne.fr/indexGB.html).

Thanks to all the contributors who submitted papers and proposed workshops, installations and music,
we will have a very interesting and varied program at the conference. We are pleased to welcome,
over a period of 4 days, some twenty conferences on various subjects with speakers from different
backgrounds and countries.

We'd like to thank all those who contribute to the realization of this edition, and especially Albert
Gräf, Philippe Ezequel, Jean-François Minjard, Stéphane Letz, Lionel Rascle, Thomas Cipierre,
Sébastien Clara, Landrivon Philippe, David-Olivier Lartigaud, Jean-Jacques Girardot, Martine
Patsalis, Nadine Leveque-Lair and all the reviewers and members of the scientifc and artistic
committees.

Thanks to our partners who helped to fnance this conference : the CIEREC, GRAME, Masters RIM
& RAN, the UJM Music and Arts Departments, The Arts, Lettres, Langues Faculty, Random-Lab at
ESADSE (Art School of Saint-Etienne), Le Son des Choses, Electro-M, IDjeune, the Commission
Sociale et Vie Etudiante at l’UJM.

LAC 2017 has been also partially funded by the FEEVER project [ANR-13-BS02-0008] supported by
the Agence Nationale pour la Recherche.

We hope that you will enjoy the conference and have a pleasant stay in Saint-Etienne!

Vincent Ciciliato, Yann Orlarey et Laurent Pottier

LAC 2017 Teams

Organizers

• CIEREC (Centre Interdisciplinaire d’Étude et de Recherche sur l’Expression Contemporaine),
director: Danièle Méaux, directors of the Electronic Team: Laurent Pottier & Vincent
Ciciliato

• Music Department of Jean Monnet University (UJM), director: Anne Damon-Guillot
• GRAME (National Center for Musical Creation), director: James Giroudon, scientifc

director: Yann Orlarey
• Random-Lab, Center for Open Researches in Art, Design and New Media at ESADSE (Art

School of Saint-Etienne), director: David-Olivier Lartigaud
• Association « Le son des choses » (Acousmatic Music)
• Association « Electro-M » (Masters RIM RAN students)

Organizing committee

• Vincent Ciciliato, Lecturer (Digital Arts) at CIEREC (UJM)
• Thomas Cipierre, PhD student (Musicology) at CIEREC (UJM)
• Sébastien Clara, PhD student (Musicology) at CIEREC (UJM)
• Philippe Ezequel, Lecturer (Computer Sciences) at CIEREC (UJM)
• Jean-Jacques Girardot, Programmer (Computer Sciences) at Le son des Choses
• Stéphane Letz, Researcher at GRAME
• Philippe Landrivon, Audiovisual technician, ALL faculty (UJM)
• David-Olivier Lartigaud, Director of Random-Lab (ESADSE)
• Jean-François Minjard, Composer at Le Son des Choses
• Yann Orlarey, Scientifc director of GRAME
• Laurent Pottier, Lecturer (Musicology) at CIEREC (UJM)
• Lionel Rascle, Professor (Musical School – St Chamond & Rive de Giers)

Scientifc committee

• Fons Adriaensen
• Marije Baalman
• Tim Blechmann
• Alain Bonardi
• Ivica Ico Bukvic
• Guilherme Carvalho
• Vincent Ciciliato
• Thierry Coduys
• Myriam Desainte–Catherine
• Goetz Dipper
• Catinca Dumitrascu
• Philippe Ezequel

• John Fftch
• Dominique Fober
• Robin Gareus
• Albert Gräf
• Marc Groenewegen
• Florian Hollerweger
• Madeline Huberth
• Jeremy Jongepier
• Pierre Jouvelot
• David-Olivier Lartigaud
• Victor Lazzarini
• Stéphane Letz
• Fernando Lopez-Lezcano
• Kjetil Matheussen
• Romain Michon
• Frank Neumann
• Yann Orlarey
• Dave Phillips
• Peter Plessas
• Laurent Pottier
• Miller Puckette
• Elodie Rabibisoa
• Lionel Rascle
• David Robillard
• Martin Rumori
• Bruno Ruviaro
• Funs Seelen
• Julius Smith
• Pieter Suurmond
• Harry Van Haaren
• Steven Yi
• Johannes Zmölnig

SUMMARY	

Special	Guests	

Paul Davis -- 1

Thierry Coduys -- 1

Conferences	

1. OpenAV Ctrla: A Library for Tight Integration of Controllers by Harry Van Haaren -- 5

2. Binaural Floss - “ Exploring Media, Immersion, Technology by Martin Rumori ------- 13

3. A versatile workstation for the diffusion, mixing and post-production of spatial audio

by Thibaut Carpentier -- 21

4. Teaching Sound Synthesis in C/C++ on the Raspberry PI by Henrik Von Coler,

David Runge. -- 29

5. Open Signal Processing Software Platform for Hearing Aid Research (openMHA) by

Tobias Herzke, Hendrik Kayser, Frasher Loshaj, Giso Grimm, Volker Hohmann --------- 35

6. Towards dynamic and animated music notation using INScore by Dominique Fober,

Yann Orlarey, Stéphane Letz -- 43

7. PlayGuru, a music tutor by Marc Groenewegen --- 53

8. Faust audio DSP language for JUCE by Adrien Albouy, Stéphane Letz ---------------- 61

9. Polyphony, sample-accurate control and MIDI support for FAUST DSP using

combinable architecture files by Stéphane Letz, Yann Orlarey, Dominique Fober,

Romain Michon --- 69

10. faust2api: a Comprehensive API Generator for Android and iOS by Romain

Michon, Julius Smith, Stéphane Letz, Chris Chafe, Yann Orlarey --------------------------- 77

11. New Signal Processing Libraries for Faust by Romain Michon, Julius Smith, Yann

Orlarey -- 83

12. Heterogeneous data orchestration - Interactive fantasia under SuperCollider by

Sébastien Clara --- 89

13. Higher Order Ambisonics for SuperCollider by Florian Grond, Pierre Lecomte ------ 95

14. STatic (LLVM) Object Analysis Tool: Stoat by Mark McCurry -------------------------- 105

15. AVE Absurdum by Winfried Ritsch -- 111

16. Multi-user posture and gesture classification for "subject-in-the-loop" applications

by Giso Grimm, Joanna Luberadzka, Volker Hohmann --------------------------------------- 119

17. VoiceOfFaust by Bart Brouns --- 127

18. On the Development of C++ Instruments by Victor Lazzarini --------------------------- 133

19. Meet the Cat: Pd-L2Ork and its New Cross-Platform Version "Purr Data" by Ivica

Bukvic, Albert Graef, Jonathan Wilkes -- 141

Posters	/	Speed-Geeking	

Impulse-Response- and CAD-Model-Based Physical Modeling in Faust (poster) by

Pierre-Amaury Grumiaux, Romain Michon, Emilio Gallego Arias, Pierre Jouvelot ------ 151

Fundamental Frequency Estimation for Non-Interactive Audio-Visual Simulations

(poster) by Rahul Agnihotri, Romain Michon, Timothy O'Brian ----------------------------- 155

Porting WDL-OL to LADSPA (speed-geeking) by Jean-Jacques Girardot ------------------ 159

Workshops	

 --- 161

Concerts	

 --- 169

Installations	

 --- 177

	

	

Special	Guests	

PAUL	DAVIS	

Paul Davis is the lead developer of the open source Ardour digital audio workstation, as well

as the JACK Audio Connection Kit. Before his18 years involvement with audio

software, Paul moved between academia and the corporate computing worlds, including 4-1/2

years at the University of Washington's Computer Science & Engineering department, and

then becoming the 2nd employee at Amazon.com. In 2008/2009 he taught at the Technische

Universitat, Berlin as the Edgar Varese Visiting Professor. Paul normally lives

near Philadelphia, PA, but can also be found living and working in a solar-powered van. To

his regret, Paul does not play any musical instruments.

Talk:

20 years of Open Source Audio: Success, Failure and The In-Between

I will talk about the 20-year history of open source audio development (focused on Linux but

including other platforms when appropriate). It is a story that includes successes, failures and

a lot of more ambiguous elements. I will discuss the way that the open source model does and

does not help with software development, and also the sometimes surprising ways that "open

source" might be pushing audio and music technology in the near future.

Thierry	Codyus	

Artist, musician, new technology expert, Thierry Coduys specializes in collaborative and

multidisciplinary projects where interactivity meets the contemporary arts. Since 1986, he has

worked closely with the avant-garde of contemporary music (e.g. Karlheinz Stockhausen,

Steve Reich, ...) to realize electroacoustic and computer systems for live performance. After a

few years spent at the IRCAM in Paris, he becomes the assistant to Luciano Berio. Building

on his experience of the contemporary art scene, he creates his own company in 1999: an

artistic research and technology laboratory called ‘La kitchen’, where artists from various

horizons (e.g. music, dance, theatre, video, network) came to develop projects in collaboration

with the team and where artists were encouraged to use Open Source Software. Thierry,

among others, has been for more than 15 years the project manager of ‘IanniX’ (GNU GPL3

application), an interactive software interface, inspired by the UPIC of Iannis Xenakis and

senior consultant for the development of ‘Rekall' (GNU GPL3 application), a video-

annotation software to document digital performances.

Talk:

Why could the open source software change the way of writing for contemporary creation?

I will try to explain how it is important to propose to the artists to use open source’s tools. For

such a long time artists have been obliged to play the game of commerce and industries, and

also to use dedicated platforms in research and creation centres, they are waiting now for new

concepts and not only for new production’s tools. Open Source community attracts brilliant

developers, very motivated and often not very well paid. Many reasons can explain this

interest, like clean design, liability, easy maintenance in the respect of the rules and values

shared by the community, but also and mostly its freedom without constrictions that leave

space to new concepts. I will show some examples of creation in collaboration with artists in

all phases of development and their impact on the functions of the software which are used in

the creation process.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 1

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 2

Conferences

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 3

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 4

OpenAV Ctlra:
A Library for Tight Integration of Controllers

Harry VAN HAAREN
OpenAV
Bohatch,

Mountshannon,
Co Clare, Ireland.

harryhaaren@gmail.com

Abstract

Ctlra is a library designed to encourage integra-
tion of hardware and software. The library ab-
stracts events from the hardware controller, emitting
generic events which can be mapped to functionality
exposed by the software.

The generic events provide a powerful method
to allow developers and users integrate hardware
and software, however a good development workflow
is vital to users while tailoring mappings to their
unique needs.

This paper proposes an implementation to enable
a fast scripting-like development workflow utilizing
on-the-fly recompilation of C code for integrating
hardware and software in the Ctlra environment.

Keywords

Controllers, Hardware, Software, Integration.

1 Introduction

Ctlra aims to enable easy integration between
DAWs and controllers. At OpenAV we believe
that enabling hardware controllers to be 1st
class citizens in controlling music software will
provide the best on-stage workflow possible.
Ctlra has been developed due to lack of a

simple C library that affords interacting with a
range of controllers in a generic but direct way,
that enables tight integration.

1.1 Existing Projects

Although many projects exist to enable hard-
ware access, very few aim to provide a generic
interface for applications to use.
Projects such as maschine.rs[Light, 2016],

HDJD[Pickett, 2017], OpenKinect[OpenKinect-
Community, 2017] and CWiid[Smith, 2007] all
enable hardware access, however they each ex-
pose a a unique API to the application, resulting
in the need to explicitly support each controller.
The o.io[Freed, 2014] project aims to unify

communications for various types of interac-
tion using an OSC API, which is similar to
the generic events concept. Discoverability and

familiarity with the implementation presented
possible issues, so Ctlra is designed as a simple
C API that will be instantly familiar to seasoned
developers.
Hence, Ctlra is implemented as a C library

that provides generic events to the application,
regardless of the hardware in use.

1.2 Modern Controllers

Each year there are new, more powerful and
complex hardware controllers, often with large
numbers of input controls, and lots of feedback
using LEDs etc. The latest generations have
seen an uptake in high-resolution screens built
into the hardware.
The capabilities of these devices require an

equally powerful method to control the hard-
ware, or risk not utilizing them to the full po-
tential. As such, any library to interface with
these controllers should afford handling these
complex and powerful controller devices easily.

1.3 Why a Controller library?

Although every application could implement its
own device-handling mechanism, there are sig-
nificant downsides to this approach.
Firstly, a developer will not have access to

all controllers that are available, so only a sub-
set of the controllers will have tight integration
with their software. As an end result, the users
controller may not be directly supported by the
application.
Secondly, duplication of effort is significant,

both in the development and testing of the con-
troller support. This is particularly true if a
device supports multiple layers of controls.
Thirdly, advanced controller support features

like hotplug and supporting multiple devices of
the same type must also be tested - requir-
ing both access to multiple hardware units and
time.
The Ctlra library shares the effort required to

develop support for these powerful devices, pro-

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 5

viding users and developers with an easy API
to communicate with the hardware.

1.4 Tight integration

The terms “tight integration” or “deep integra-
tion” are often used to describe hardware and
software that collaborate closely together, per-
haps they are even specifically designed to suite
one other.
Tight integration leads to better workflows

for on-stage usage of software, as it allows oper-
ations from inside the software to be controlled
by the hardware device and appropriate feed-
back returned to the user.
The advantage of tight integration is pro-

viding a more powerful way of integrating the
physical device and the software. As an exam-
ple, many DAWs support MIDI Control Change
(CC) messages, and allow changing a parame-
ter with it. Although such a 1:1 mapping is
useful, most workflows require more flexibility.
For example, each physical control could effect
a number of parameters with weighting applied
to provide a more dynamic performance.

1.5 Controller Mapping

The Ctlra library allows mappings to be cre-
ated between physical controls and the target
software. DAWs could expose this functional-
ity for technical users - giving them full control
over the software.
Given the variation in live-performances and

on-stage workflows, there is no ideal mapping
from a device to the application - it depends
on the user. As a result, OpenAV is of the
opinion that enabling users to create custom
mappings from controllers to software using a
generic event as a medium to do so is the best
approach.

1.6 Scripting APIs

Various audio applications provide APIs to al-
low users script functionality for their con-
troller. Enabling users to script themselves re-
quires technical skill from the user, however it
seems like there is no viable alternative.
The solution proposed in section 4 also pro-

poses “crowd-sourcing” the effort in writing
controller mappings to the users themselves, as
they have access to the physical device and have
knowledge of their ideal workflow.
Examples of audio applications that pro-

vide scripting APIs are Ardour[Davis, 2017],
Mixxx[Mixxx, 2017] and Bitwig Studio[Bitwig,
2017]. Although Ableton Live[Ableton, 2017]

doesn’t officially expose a scripting API, the are
members of the community that have investi-
gated and successfully written scripts to control
it[Petrov, 2017].
A brief review shows high-level scripting lan-

guages are favoured over compiled languages.
Mixxx and Bitwig are both using JavaScript,
while Ableton Live uses Python, and Ardour
uses the Lua language.
These solutions are all valid and workable,

however they do require that the application
developer to exposes a binding API to glue the
scripting API to the core of the application.
With the exception of Lua, none of the above

scripting languages provide real-time safety un-
less very carefully programmed - which should
not be expected of user’s scripts.
OpenAV feels that providing controller sup-

port in the native language of the application
ensures that all operations that the application
is capable of are also mappable to a controller.
Other advantages of having the controller map-
pings in the native language of the application is
that they can be compiled into the application
itself.

2 Ctlra Implementation

This section details the design decisions made
during the implementation of the Ctlra library.
The core concepts like the context, device and
events are introduced.

2.1 Ctlra Context

The main part of the Ctlra library is the con-
text, it contains all the state of that particular
instance of the Ctlra library. This state is repre-
sented by a ctlra t in the code. Using a state
structure ensures that Ctlra is usable from in-
side a plugin, for example an LV2 plugin.
Devices and metadata used by Ctlra are

stored internally in the ctlra t. The end goal is
to enable multiple ctlra t instances to exist in
the same process without interfering with one-
another. This is more difficult than it sounds
as not all backends provide support for context
style usage.

2.2 Generic Events

Ctlra is built around the concept of a generic
event. The generic event is a C struc-
ture ctlra event t which may contain any
of the available event types. The avail-
able event types include all common hardware
controller interaction types, such as BUTTON,
ENCODER, SLIDER and GRID. The events are

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 6

prefixed by CTLRA EVENT , so BUTTON becomes
CTLRA EVENT BUTTON.
Once the type of the event is established,

the contents of the event can be decoded. The
generic event has a union around all events, so
an event must represent one and only one type
of event. It is expected that the application will
use a switch() statement to decode the event
types, and process them further.
The power of generic events is shown by the

examples/daemon sample application, which
translates any Ctlra supported device into an
ALSA MIDI transmitting device.

2.2.1 Button

The button event represents physical buttons
on a hardware device. It contains two variables,
id and pressed. The button id is guaranteed
to be a unique identifier for this device, based
from 0, and counting to the maximum number
of buttons. The pressed variable is a boolean
value set high when the button is pressed by the
user.

2.2.2 Slider

The slider event represents physical controls
that have a range of values, but the interaction
is of limited range, eg: faders on a mixing desk.
The slider has and id as a unique identifier for
the slider, and floating-point value that repre-
sents the position of the control. The value
variable range is normalized as a linear value
from 0.f to 1.f to allow generic usage of the
event.

2.2.3 Encoder

The encoder represents an endless rotary con-
trol on a hardware device. There are two
types of encoders, which we will refer to as
“stepped” and “continuous”. Stepped controls
have notches providing distinct steps of move-
ment, while the continuous type is smooth and
provides no physical feedback during rotation.
The stepped controls notify the appli-

cation for each notch moved by setting
the ENCODER FLAG INT, and the delta change
is available from delta. Similarly the
ENCODER FLAG FLOAT tells the application to
read the delta float value, and interpret the
value as a continuous control.

2.2.4 Grid

The grid represents a set of controls that are log-
ically grouped together, eg: the squares of the
Push2 controller. The grid event type contains
multiple variables: id, flags, pos, pressure
and pressed.

The id identifies the grid number, allowing
controllers with more than one grid to distin-
guish between them. The flags allows the
event to identify which values are valid in this
event. Currently two flags are defined, BUTTON
and PRESSURE, there are 14 bits remaining for
future expansion.
If the flag GRID FLAG BUTTON is set, the

pressed variable is valid to read, and repre-
sents if the button is currently pressed or not.
The BUTTON flag should only be set in the de-
vice backend if the state of the grid-square has
changed, this eases handling events in the appli-
cation. When GRID FLAG PRESSURE is set, the
floating-point pressure variable may be read,
The pressure value is normalized to the range
0.f to 1.0f.

2.3 Devices

In Ctlra, any physical controller is represented
internally in by a ctlra dev t. Devices do not
appear available to the application directly, but
instead operations on the device are performed
through the ctlra t context. There is an ab-
stracted representation of a device at the API
level, which the application has access to in the
event handle() callback.
The reason that the device is not exposed

to the application directly is that ownership
and cleanup of resources becomes blurred when
hotplug functionality is introduced. Using the
ctlra t context as a proxy for multiple devices
not only simplifies the application handling of
controllers, but actually helps define stronger
memory ownership rules too. See section 2.4
for hotplug implementation details.

2.3.1 Device Backends

A device backend is how the software driver con-
nects to the physical device.
The implementation of the driver calls a

read() function, which indicates the driver
wishes to receive data. The backend library
will send an async read to the physical device,
and return immediately. Upon completion of
the transaction a callback in the driver is called
which decodes the newly received data, and can
emit events to the application if required. To
write data to the device, a write() is provided.

Note that a single device driver may open
multiple backends, or utilize multiple connec-
tions of the same backend in order to fully sup-
port the capabilities of the hardware. An ex-
ample could be a USB controller that exposes
both a USB interrupt endpoint for buttons and

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 7

a USB bulk endpoint for sending data to a high-
resolution screen.
Note that more backends can be added to

support more devices if it is required in future.

2.4 Hotplug Implementation

Implementing a hotplug feature is difficult; it
requires handling device additions and removals
in the library itself, as well as a method to com-
municate any changes of environment with the
application.
As Ctlra is a new library built from the

ground up, hotplug was a consideration from
the start as a required feature. As such, the API
has been influenced by and designed for hotplug
capabilities. The concept of a ctlra t context
that contains devices was introduced to allow
transparent adding of devices without blurring
memory ownership rules.
Hotplug of USB devices is enabled by

LibUSB, which provides a hotplug callback,
when a hotplug callback is registered and
hotplug is supported on the platform. The
USB hotplug callback is utilized to call the
accept device() callback in the application,
providing details of the controller. The info pro-
vided allows the application to present the user
with a choice of accepting or rejecting the con-
troller, and if accepted, it will be added to the
ctlra t context.

3 Application Usage of Ctlra

This section will introduce the reader to the
steps required to integrate Ctlra into an applica-
tion. Refer to the examples/simple/simple.c
sample to see a minimal program in action.

The following steps summarize Ctlra usage:

1. ctlra create()

2. ctlra probe()

❼ Accept controller in callback

3. ctlra iter()

❼ Handle events in callback

4. ctlra exit()

This creates a single ctlra t context, probes
and accepts any supported controller. The ac-
cepted controllers are connected to the particu-
lar context that it was probed from.
Calling ctlra iter() causes the event to be

polled and the application is given a chance
to send feedback to the device. Finally,
ctlra exit() releases any resources and grace-
fully closes the context.

3.1 Interaction

The main interaction between Ctlra and the
application happens in two functions. Events
from the device are handled in the applica-
tion provided event handle() function, while
feedback can be sent to a device from the
feedback func().

These functions are callback functions, and
they are invoked for each device when the ap-
plication calls ctlra iter().

To understand the events passed between the
device and the application, please review the
generic events (Section 2.2), and browse the
examples/ directory.

3.2 Controller’s View of State

Each application has its own way of representing
its state. Similarly, each controller has its own
capabilities in terms of controls and feedback to
the user. Given the specific application state
and capabilities of the hardware, it is useful to
create a struct specifically for storing the view
that the controller has of the application.
Note that the controller view should be

tracked per instance of the controller, as users
may have multiple identical controllers. This
controller’s instance of the struct is very useful
for remapping the controls to provide an alter-
nate map when a “shift” key is held down. As
the struct depends on the application and de-
vice, this problem can not be solved elegantly
at the library layer.
Ctlra provides a userdata pointer for each in-

stance which can be purposed for to point to the
state struct. If the application’s state must be
accessed from the state-struct, a “back-pointer”
to the application elegantly provides that.
The memory for the state struct can be al-

located in the accept device() callback from
Ctlra, and the memory can be released in
when the device is disconnected using the
remove device() callback.

4 Device Scripting in C

This section describes a solution to providing
a fast and interactive development workflow for
scripting mappings between software and device
using the C language.
C is typically a compiled and static language,

not one that comes to mind when discussing dy-
namic and scripting type workflows. Although
generally accurate, C can be used as a dynamic
language with certain compromises. The follow-
ing section details how applications can imple-

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 8

ment a C scripting workflow for users to quickly
develop “Ctlra scripts”.

4.1 Dynamic Compilation

Dynamically compiling C at runtime can be
achieved by bundling a small, lightweight C
compiler with your application. This may sound
a little crazy, but there are very small and
lightweight C compilers available designed for
this type of usage. The “Tiny C Compiler”,
or TCC[Bellard, 2017] project is used to enable
compiling C code at runtime of the application.
Please note that the security of dynamically

compiling code is not being considered here as
the goal is to enable user-scripted controller
mappings for musical performance. If security
is a concern, the reader is encouraged to find a
different solution.

4.2 TCC and Function Pointers

The TCC API has various functions to create a
compilation context, set includes, and add files
for compilation. Once initialized, TCC takes an
ordinary .c source file, and compiles it.

When compilations completes successfully,
TCC allows requesting functions from the script
by name, returning a function pointer.
The returned function pointer may be called

by the host application, forming the method of
communicating with the compiled script.

4.3 The Illusion of Scripting

To provide the illusion that the code is a script,
the application can check the modified time of
a script file, and recompile the file if needed.
By swapping in the new function pointers, the
update code runs. The old program can then
be freed, cleaning up the resources that were
consumed by the now outdated script.
The examples/tcc scripting/ directory

contains a minimal example showing how the
event handling for any Ctlra supported device
can be dynamically scripted.
Providing this workflow requires some extra

integration from the application, however the
time pays off easily in developer time saved
when time save in scripting support for each
controller is considered.

4.4 C and C++ APIs

Note that TCC is a C compiler only - explicitly
not a C++ compiler. This has some impact on
how scripts can interact with applications, as
many large open-source audio projects are writ-
ten in C++. The solution is to provide wrapper
functions to C, if the hosts language is C++.

Often real-time software uses message-
passing in plain C structs through ringbuffers.
This is a good way to communicate between dy-
namically compiled scripts and the host, as it
provides a native C API, as well as a method to
achieve thread-safe message passing.

5 Case Study: Ctlra and Mixxx

This section briefly describes the work per-
formed to integrate Ctlra with the open-source
Mixxx DJ software. It is presented here to
showcase how to integrate the Ctlra library in
an existing project.

5.1 Implementation

This section details the steps taken to integrate
the Ctlra library in Mixxx to test Ctlra in the
real-world.

5.1.1 Class Structure

Mixxx has a very object oriented design, utiliz-
ing C++ classes to abstract behaviour of control
devices and managers of those control devices.
The ControllerManager class aggregates the
different types of ControllerEnumerator
classes, which in turn add Controller class in-
stances to the list of active controllers. Ctlra has
been integrated as a ControllerEnumerator
sub-class for this proof-of-concept implemen-
tation, really it should be integrated at the
ControllerManager level.

5.1.2 Threading in the Mixxx Engine

The Mixxx engine currently creates many
threads. This design is supported by the use of
an “atomic database” of values (see next Section
5.1.3). Given this design, the Ctlra integration
is done by spawning a Ctlra handling thread,
which performs any polling and interacting with
Ctlra supported devices.

5.1.3 Communicating with the Engine

The Mixxx engine is composed of values, which
can be controlled from any thread anywhere
in the code. These values are represented in
the code by ControlObject and ControlProxy
classes. A ControlObject is the equivalent to
owning a value, while the ControlProxy allows
atomic access to update the value. Lookup of
these values is performed using “group” and
“key” strings. The strings are constant allowing
Ctlra and the Mixxx engine to understand the
meaning of each value represented by a partic-
ular ControlProxy.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 9

5.1.4 Mixxx’s C++ API

An issue arises due to Mixxx having a Control-
Proxy being a C++ class which is not possible
to access from a TCC compiled script (refer to
C and C++ APIs, Section 4.4).
The solution is to create a C wrapper

function, which simply provides a C API to
the desired C++ function to be called on a
ControlProxy instance. This provides the
power of the Mixxx engine to the dynamically
compiled script code:

void m ixxx con f i g k ey s e t (
con s l char ✯group ,
const char ✯key ,
f l o a t va lue) ;

5.2 Mixxx and Hotplug

Since Ctlra hides the hotplug functionality
from the application due to the design of the
accept device() callback, Mixxx supports on-
the-fly plug-in and plug-out transparently.
This is achieved by the Ctlra library having

its own thread to poll events (see Section 5.1.2),
and handling the connect or disconnect events.
The Mixxx application code did not have to be
modified to support hotplugging of controllers
in any way (beyond adding basic Cltra support).

5.3 Scripting Controller Support

With the Ctlra library integrated in Mixxx,
users are now able to script the tight integration
of the Ctlra supported hardware and Mixxx.
The next sections demonstrate simple mappings
from a device to Mixxx and vice-versa.

5.3.1 Event Input to Mixxx

When a user presses a physical control on a de-
vice, the action is presented to the application
as an event. The user can map these events to
the application in a variety of ways, in order to
suit their own requirements on how they wish
to control the software application.
For example, the following snippet shows how

we can bind slider ID 10 to channel 1 volume in
Mixxx (note the usage of the C function from
Section 5.1.4):

case CTLRA EVENT SLIDER:
switch (e−>s l i d e r . id) {
case 10 :

m ixxx con f i g k ey s e t (
✬ ✬ [Channel1] ✬ ✬ ,
✬ ✬ volume ✬ ✬ ,
e−>s l i d e r . va lue) ;

break ;

5.3.2 Mixxx Feedback to Device

The reverse of the previous paragraph is to
send Mixxx state to the physical device, provid-
ing feedback to the user. Each parameter that
Mixxx exposes via the ControlProxy is avail-
able for reading as well as writing. The allows
the script to query the state of a particular vari-
able from Mixxx, and update the state of an
LED on the device, using the Ctlra encoding
for colour and brightness:

i n t play ;
play = mixxx con f i g key ge t (

✬ ✬ [Channel1] ✬ ✬ ,
✬ ✬ p l ay i nd i c a t o r ✬ ✬) ;

l ed = play > 0 ? 0 x f f f f f f f f : 0 ;

c t l r a d e v l i g h t s e t (dev ,
DEVICE LED PLAY,
l ed) ;

6 Future Work

To make Ctlra a ubiquitous library for event
I/O is a huge task, however the benefit to all
applications if such a library did exist would be
huge too.
Imagine easily scripting your DIY controller

to easily control any aspect of any software -
huge potential for customized powerful user-
experience. OpenAV intends to use the Ctlra
library and integrate it with any projects that
would benefit from a powerful customizable
workflow.

6.1 Device Support

At time of writing, the Ctlra library supports
6 advanced USB HID devices, one USB DMX
device, a generic MIDI backend, and plans are
in place to support a common bluetooth console
controller - but more must be added to make the
Ctlra library really useful!
An interesting angle may be so that DIY plat-

forms like Arduino can be used to build con-
trollers that use a generic Ctlra backend, allow-
ing controllers to be auto-supported.
The previously mentioned hardware enabling

projects that provide access to specific hardware
devices could be integrated with Ctlra, trans-
parently benefiting applications that use Ctlra.
The number of supported hardware devices is

paramount to the success of the Ctlra library, so
OpenAV welcomes patches or pull-requests that
add support for a device.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 10

6.2 Software Environments

From the software point-of-view there is huge
potential for integrating into existing software.
For example mapping Ctlra events to LV2

Atoms would expose the Ctlra backends to any
LV2 Atom capable host.
Integration with DSP languages like FAUST

or PD may prove interesting and allow for faster
prototyping and more powerful control over per-
formance using those tools.
Hardware platforms like the MOD

Duo[MOD, 2017] could use the Ctlra li-
brary to enable musicians to use a wider
variety of controllers in thier on-stage setups in
conjunction with the DSP on the DUO.

7 Conclusion

This paper presents Ctlra, a library that allows
an application to interface with a range of con-
trollers in a powerful and customizable way.
It shows how applications and devices can in-

teract by using generic events. A case study
showcases integrating Ctlra with the open-
source Mixxx project as a proof of concept.
To enable a fast development workflow for

creating mappings between applications and de-
vices, a method to dynamically compile C code
is introduced. This enables developers and users
to write mappings between devices and appli-
cations as if C was a scripting language, but
provides native access to the applications data
structures.
Ctlra is available from github here[OpenAV,

2017], please run the sample programs in the
examples/ directory of the source to experience
the power of Ctlra yourself.

8 Acknowledgements

OpenAV would like to acknowledge the linux-
audio community and open-source ecosystem as
a whole for providing novel solutions to various
problems and being a great place to collaborate
and innovate. For the work on Ctlra certain
people and projects provided lots of inspiration
and support, thanks!
Thanks to the TCC project, which allows dy-

namically compiling Ctlra scipts, it is awesome
to script in C!
Thanks to William Light for writing

maschine.rs, David Robillard for the creation
of PUGL[Robillard, 2017], the Mixxx project
devs (particular shout outs to be , Pegasus RPG
and rryan on #mixxx on irc.freenode.net.

References

Ableton. 2017. Music production
with live and push — ableton.
https://www.ableton.com.

Fabrice Bellard. 2017. Tcc : Tiny c compiler.
https://http://www.bellard.org/tcc/.

Bitwig. 2017. Bitwig music productiona nd
performance system for windows, macos and
linux. https://www.bitwig.com.

Paul Davis. 2017. Ardour: Record, edit,
and mix on linux, os x and windows.
http://ardour.org/.

Adrian Freed. 2014. o.io: a unified com-
munications framework for music, interme-
dia and cloud interaction. International Com-
puter Music Conference (ICMC) 2014.

William Light. 2016. Maschine.rs, open-
source ni maschine device handling.
https://github.com/wrl/maschine.rs.

Mixxx. 2017. Mixxx dj software, dj your way.
for free. https://mixxx.org/.

MOD. 2017. Mod duo, the definitive stomp-
box. https://moddevices.com/pages/mod-
duo.

OpenAV. 2017. Ctlra is a library pro-
viding support for controllers, designed
to integrate hardware and software.
https://github.com/openAVproductions/
openAV-Ctlra.

OpenKinect-Community. 2017. Open source
libraries that will enable the kinect to
be used with windows, linux, and mac.
https://openkinect.org.

Hanz Petrov. 2017. Introduction
to the ableton framework classes.
http://remotescripts.blogspot.com/2010/03/
introduction-to-framework-classes.html.

Neale Pickett. 2017. Hercules
dj controller driver for linux.
https://github.com/nealey/hdjd.

David Robillard. 2017. Pugl is a min-
imal portable api for opengl guis.
https://drobilla.net/software/pugl.

Donnie Smith. 2007. A collection
of linux tools written in c for in-
terfacing to the nintendo wiimote.
http://abstrakraft.org/cwiid/.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 11

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 12

❇✐♥❛✉r❛❧ ❋❧♦ss ✕ ❊①♣❧♦r✐♥❣ ▼❡❞✐❛✱ ■♠♠❡rs✐♦♥✱ ❚❡❝❤♥♦❧♦❣②

▼❛rt✐♥ ❘❯▼❖❘■
■♥st✐t✉t❡ ♦❢ ❊❧❡❝tr♦♥✐❝ ▼✉s✐❝ ❛♥❞ ❆❝♦✉st✐❝s ✭■❊▼✮
❯♥✐✈❡rs✐t② ♦❢ ▼✉s✐❝ ❛♥❞ P❡r❢♦r♠✐♥❣ ❆rts ●r❛③

■♥✛❡❧❞❣❛ss❡ ✶✵✴✸✱ ✽✵✶✵ ●r❛③✱ ❆✉str✐❛
r✉♠♦r✐❅✐❡♠✳❛t

❆❜str❛❝t

Technology for binaural audio, that is, relating two

audio signals to the psychophysical properties of the

human hearing apparatus, is capable of recording,

synthesising and reproducing the spatial informa-

tion of an auditory environment comprising an im-

mersive quality. While current scholarly research on

binaural rendering and reproduction techniques for

personal, mobile and interactive audio augmented

environments is well advanced, their grounding with

respect to the aesthetic experience in an integral lis-

tening act is not. Based on the case study of an

intermedia installation, Parisflâneur, an attempt to-

wards the exploration and reflection of binaural me-

dia properties is made. Here, a special emphasis is

put on the role of FLOSS tools in an arts-based re-

search context.

❑❡②✇♦r❞s

binaural audio, immersion, floss tools, intermedia

art, field recordings

✶ ■♥tr♦❞✉❝t✐♦♥

❇✐♥❛✉r❛❧ ❛✉❞✐♦ ♠❡❛♥s t♦ r❡❧❛t❡ ❛ ♣❛✐r ♦❢ ❛✉❞✐♦
s✐❣♥❛❧s t♦ t❤❡ ♣s②❝❤♦♣❤②s✐❝❛❧ ♣r♦♣❡rt✐❡s ♦❢ t❤❡
❤✉♠❛♥ ❤❡❛r✐♥❣ ❛♣♣❛r❛t✉s✱ t❤❛t ✐s✱ t❤❡ s✐❣♥❛❧s
❛r❡ r❡❣❛r❞❡❞ ❛s s♦ ❝❛❧❧❡❞ ❡❛r s✐❣♥❛❧s✳ ❇✐♥❛✉r❛❧
❛✉❞✐♦ ✐s ❛♠♦♥❣ t❤❡ ❡❛r❧✐❡st ❛tt❡♠♣ts ♦❢ r❡❝♦r❞✲
✐♥❣✱ r❡♣r♦❞✉❝✐♥❣ ❛♥❞ s②♥t❤❡s✐s✐♥❣ t❤❡ s♣❛t✐❛❧ ✐♥✲
❢♦r♠❛t✐♦♥ ♦❢ ❛♥ ❛✉❞✐t♦r② s❝❡♥❡ ❜② ❞✉♠♠② ❤❡❛❞
♠✐❝r♦♣❤♦♥❡s✱ ❛♣♣r♦♣r✐❛t❡ s✐❣♥❛❧ ♣r♦❝❡ss✐♥❣ ❛♥❞
❜② ♣r❡s❡♥t✐♥❣ t❤❡ ❜✐♥❛✉r❛❧ s✐❣♥❛❧ ♣❛✐r ✐s♦❧❛t❡❞
❢r♦♠ ❡❛❝❤ ♦t❤❡r t♦ t❤❡ ❧❡❢t ❛♥❞ r✐❣❤t ❡❛r✱ r❡✲
s♣❡❝t✐✈❡❧②✱ ✉s✉❛❧❧② ✈✐❛ ❤❡❛❞♣❤♦♥❡s✳ ◆♦✇❛❞❛②s✱
✐♥ t❤❡ ✈✐❡✇ ♦❢ ✉❜✐q✉✐t♦✉s ❤❡❛❞♣❤♦♥❡ ✉s❡ ❛♥❞ t❤❡
❛❞✈❡♥t ♦❢ ✇✐❞❡s♣r❡❛❞ t❤r❡❡✲❞✐♠❡♥s✐♦♥❛❧ ✈✐❞❡♦
♣r♦❥❡❝t✐♦♥✱ ❜✐♥❛✉r❛❧ t❡❝❤♥♦❧♦❣② ❝♦♥st❛♥t❧② ❣❛✐♥s
s✐❣♥✐✜❝❛♥❝❡✱ ❛♥❞ s♦ ❞♦❡s r❡s❡❛r❝❤ ♦♥ t❤❡ ♦♣t✐♠❛❧
r❡♥❞❡r✐♥❣ ❛♥❞ ♣r♦❥❡❝t✐♦♥ ♦❢ ♣❡rs♦♥❛❧✱ ♠♦❜✐❧❡ ❛♥❞
✐♥t❡r❛❝t✐✈❡ ❛✉❞✐♦ ❛✉❣♠❡♥t❡❞ ❡♥✈✐r♦♥♠❡♥ts✳
❲❤❡♥ ✐t ❝♦♠❡s t♦ t❤❡ ❝r❡❛t✐♦♥ ♦❢ s✉❝❤ ❡♥✈✐r♦♥✲

♠❡♥ts✱ ♦♣t✐♠✐s❛t✐♦♥ t❛r❣❡ts ❜❡❝♦♠❡ ♠✉❝❤ ❧❡ss

❝❧❡❛r✳ ◗✉❡st✐♦♥s ♦❢ ✐♠♠❡rs✐♦♥✱ ♣❡r❝❡♣t✐♦♥ ❛♥❞
❝♦❣♥✐t✐♦♥ ❛r✐s❡ ❛s ❝♦♠♣♦♥❡♥ts ♦❢ ❛♥ ✐♥t❡❣r❛❧ ❛❡s✲
t❤❡t✐❝ ❡①♣❡r✐❡♥❝❡✳ ▼❡t❤♦❞s ✐♥ s❝❤♦❧❛r❧② r❡s❡❛r❝❤
✉s✉❛❧❧② s❡❣♠❡♥t ❝♦♠♣❧❡① ♣r♦❝❡ss❡s s✉❝❤ t❤❛t✱
❢♦r ✐♥st❛♥❝❡✱ ❝❡rt❛✐♥ ♣s②❝❤♦❛❝♦✉st✐❝ ♣❛r❛♠❡t❡rs
❛r❡ ✐s♦❧❛t❡❞ ❢♦r s❡♣❛r❛t❡ ✐♥✈❡st✐❣❛t✐♦♥✳ ❚❤❡ r❡✲
s✉❧ts ♦❢ ❧✐st❡♥✐♥❣ t❡sts ❛❝❝♦r❞✐♥❣ t♦ s✉❝❤ ♠❡t❤✲
♦❞s ♦❢t❡♥ ❝❛♥♥♦t ❜❡ ❣❡♥❡r❛❧✐s❡❞ ❢♦r r❡❣❛r❞✐♥❣ ❛
❝♦♠♣❧❡① ❧✐st❡♥✐♥❣ ♣r♦❝❡ss t❤❛t ✐♥✈♦❧✈❡s ♠✉s✐❝❛❧
♦r ❛♥❡❝❞♦t❛❧ ❛s♣❡❝ts ♦❢ t❤❡ s♦✉♥❞ ♠❛t❡r✐❛❧✱ ❝♦❣✲
♥✐t✐✈❡ ❝♦♥tr✐❜✉t✐♦♥ ♦r ♣r❡✈✐♦✉s ❡①♣❡r✐❡♥❝❡ ❜② t❤❡
❧✐st❡♥❡rs✱ t♦ ♥❛♠❡ ❥✉st ❛ ❢❡✇ ❢❛❝t♦rs✳
❖❜✈✐♦✉s❧②✱ t❤✐s ♣❛♣❡r ❝❛♥♥♦t ♣r♦✈✐❞❡ s♦❧✉✲

t✐♦♥s ♦r ❛♥s✇❡rs✳ ❲❤❛t ■ ❛♠ ❣♦✐♥❣ t♦ ♣r❡s❡♥t
✐s ❛ ♣❡rs♦♥❛❧ ❛tt❡♠♣t ♦❢ ❛♣♣r♦❛❝❤✐♥❣ t❤❡♦r❡t✲
✐❝❛❧✱ ❛❡st❤❡t✐❝ ❛♥❞ ❡♥❣✐♥❡❡r✐♥❣ r❡✢❡❝t✐♦♥s ❛❧♦♥❣
t❤❡ ❞❡✈❡❧♦♣♠❡♥t ♦❢ ❛♥ ❛rt✐st✐❝ ❝❛s❡ st✉❞②✱ P❛r✐s✲
✢â♥❡✉r✱ ✇❤✐❝❤ ✐s ✇♦r❦ ✐♥ ♣r♦❣r❡ss✳
■♥ t❤❡ ♥❡①t s❡❝t✐♦♥✱ ■ ✇✐❧❧ ❞❡s❝r✐❜❡ t❤❡ ❝❛s❡

st✉❞② ❢r♦♠ ❛ ♣❤❡♥♦♠❡♥♦❧♦❣✐❝❛❧ ♣♦✐♥t ♦❢ ✈✐❡✇✱
t❤❛t ✐s✱ ❤♦✇ ✐t ❛♣♣❡❛rs t♦ t❤❡ ✈✐s✐t♦r ♦❢ ❛♥ ✐♠❛❣✲
✐♥❡❞ ❡①❤✐❜✐t✐♦♥✳ ❚❤❡ ❞❡s❝r✐♣t✐♦♥ ✇✐❧❧ ❜❡ ❢♦❧❧♦✇❡❞
❜② ❛ ❞❡t❛✐❧❡❞ ❞✐s❝✉ss✐♦♥ ♦❢ t❡❝❤♥✐❝❛❧ ✐♠♣❧❡♠❡♥✲
t❛t✐♦♥ ❞❡❝✐s✐♦♥s ✐♥ ❝❧♦s❡ r❡❧❛t✐♦♥ t♦ ❛❡st❤❡t✐❝ r❡✲
✢❡❝t✐♦♥s ♦♥ ❝♦♥❞✐t✐♦♥s ♦❢ t❤❡ ♠❡❞✐❛ ✐♥✈♦❧✈❡❞✳ ❆
s♣❡❝✐❛❧ ❡♠♣❤❛s✐s ✇✐❧❧ ❜❡ ♣✉t ♦♥ t❤❡ r♦❧❡ ♦❢ ❋r❡❡
❛♥❞ ▲✐❜r❡ ❖♣❡♥ ❙♦✉r❝❡ ❙♦❢t✇❛r❡ ✭❋▲❖❙❙✮ ✐♥ t❤❡
❞❡s❝r✐❜❡❞ ♣r♦❝❡ss✳

✷ P❛r✐s✢â♥❡✉r ✿ ✈✐s✐t♦r✬s ❡①♣❡r✐❡♥❝❡

P❛r✐s✢â♥❡✉r ✐s ❛ s♦✉♥❞ ✐♥st❛❧❧❛t✐♦♥ t❤❛t ❡①✲
♣❧♦r❡s t❤❡ r❡❧❛t✐♦♥ ♦❢ ❜✐♥❛✉r❛❧ r❡❝♦r❞✐♥❣ ❛♥❞ ❜✐♥✲
❛✉r❛❧ r❡♥❞❡r✐♥❣ ♦❢ ❛ ✈✐rt✉❛❧ s❝❡♥❡ ❜② ♣r♦✈✐❞✐♥❣
❛ r❡❛❝t✐✈❡✱ ♣❧❛②❢✉❧ ❡♥✈✐r♦♥♠❡♥t✳
❋r♦♠ t❤❡ ♦✉ts✐❞❡✱ t❤❡ ❛♣♣❡❛r❛♥❝❡ ♦❢ P❛r✐s✲

✢â♥❡✉r ✐s q✉✐t❡ r❡❞✉❝❡❞✿ ✐t ❞♦❡s ♥♦t ❝♦♥s✐st ♦❢
♠✉❝❤ ♠♦r❡ t❤❛♥ ❛ ♣❛✐r ♦❢ ❤❡❛❞♣❤♦♥❡s ❛♥❞ ❛♥
❡♠♣t② ❛r❡❛ ✐♥ s♣❛❝❡ ♦❢ ❛❜♦✉t t✇❡♥t② t♦ ❢♦✉rt②
sq✉❛r❡ ♠❡t❡rs✳ ❚❤❡ ✈✐s✐t♦r ✐s ✐♥✈✐t❡❞ t♦ ♣✉t
♦♥ t❤❡ ❤❡❛❞♣❤♦♥❡s ❛♥❞ ❡①♣❧♦r❡ t❤❡ ✐♥st❛❧❧❛t✐♦♥
s♦❧❡❧② ❜② ❧✐st❡♥✐♥❣ ❛♥❞ ❢r❡❡❧② ♠♦✈✐♥❣ ✐♥ t❤❡ ❛r❡❛
✇❤♦s❡ ❜♦✉♥❞❛r✐❡s ❛r❡ ✉s✉❛❧❧② ♠❛r❦❡❞ ♦♥ t❤❡
✢♦♦r✳

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 13

rumori@iem.at

❇♦t❤ t❤❡ ♣♦s✐t✐♦♥ ❛♥❞ ♦r✐❡♥t❛t✐♦♥ ♦❢ t❤❡ ❤❡❛❞✲
♣❤♦♥❡s ❛r❡ tr❛❝❦❡❞✱ ✇❤✐❝❤ t♦ ❞❛t❡ r❡q✉✐r❡s ❛♥
♦♣t✐❝❛❧ ♠✉❧t✐✲❝❛♠❡r❛ tr❛❝❦✐♥❣✱ ❣✐✈❡♥ t❤❡ r❡✲
q✉✐r❡❞ ❧❛t❡♥❝② ❧✐♠✐ts ❛♥❞ t❤❡ r❡❧❛t✐✈❡❧② ❧❛r❣❡
tr❛❝❦✐♥❣ ✈♦❧✉♠❡✳ ❚❤❛t ♠❡❛♥s t❤❛t ❛ tr❛❝❦✐♥❣
t❛r❣❡t✱ ❛ r✐❣✐❞ ❜♦❞② ♦❢ ❢♦✉r ♦r ✜✈❡ r❡✢❡❝t✐✈❡ ❜❛❧❧s✱
✐s ❛ q✉✐t❡ ♥♦t✐❝❡❛❜❧❡ ♣❛rt ♠♦✉♥t❡❞ ♦♥ t♦♣ ♦❢
t❤❡ ❤❡❛❞♣❤♦♥❡s✳✶ ❆❞❞✐t✐♦♥❛❧❧②✱ ✐♥ ♠♦st ♣r❛❝t✐✲
❝❛❧ ✐♥st❛❧❧❛t✐♦♥s ♦❢ P❛r✐s✢â♥❡✉r t❤❡ ❤❡❛❞♣❤♦♥❡s
❛r❡ ❝❛❜❧❡❞ ❛s ♥♦ s❛t✐s❢②✐♥❣ ✇✐r❡❧❡ss s♦❧✉t✐♦♥ ✇✐t❤
r❡s♣❡❝t t♦ tr❛♥s♠✐ss✐♦♥ q✉❛❧✐t② ❛♥❞ r♦❜✉st♥❡ss✱
❧♦✇ ❧❛t❡♥❝② ❛♥❞ s✐❣♥❛❧ ❞②♥❛♠✐❝s ✭✐✳ ❡✳✱ ♥♦ ❛✉❞✐♦
❝♦♠♣r❡ss✐♦♥✮ ✇❛s ❛✈❛✐❧❛❜❧❡ s♦ ❢❛r✳ ❚❤✐s ❢❛❝t ✐s
♠❡♥t✐♦♥❡❞ ❛s ✐t ♣♦t❡♥t✐❛❧❧② ✐♥t❡r❢❡r❡s ✇✐t❤ t❤❡
✈✐s✐t♦r✬s ♠♦❜✐❧✐t② ✭s❡❡ ❬❘✉♠♦r✐✱ ✷✵✶✼❪✮✳

❋✐❣✉r❡ ✶✿ ❱✐s✐t♦r ❡①♣❧♦r✐♥❣ P❛r✐s✢â♥❡✉r✳

❲❤❡♥ t❤❡ ❧✐st❡♥❡r ❡♥t❡rs t❤❡ ✐♥st❛❧❧❛t✐♦♥✱ ❤❡
✐s ♣r❡s❡♥t❡❞ ❛ ✈✐rt✉❛❧ ❛✉❞✐t♦r② s❝❡♥❡✱ ✇❤✐❝❤ ❝❛♥
❜❡ ♥❛✈✐❣❛t❡❞✳ ❯r❜❛♥ ❛♥❞ r✉r❛❧ s✐t✉❛t✐♦♥s s✉❝❤

✶❆ ♣r♦♠✐s✐♥❣ ❛❧t❡r♥❛t✐✈❡ ✐s ♣r❡s❡♥t❡❞ ❜② t❤❡ ▲✐❣❤t✲
❤♦✉s❡ s②st❡♠ ❞❡✈❡❧♦♣❡❞ ❢♦r t❤❡ ❍❚❈ ❱✐✈❡ ❣♦❣❣❧❡s ❛♥❞
t♦ ❜❡ r❡❧❡❛s❡❞ s♦♦♥ ❛s ❛♥ ✐♥❞❡♣❡♥❞❡♥t tr❛❝❦✐♥❣ s♦❧✉t✐♦♥✳
■t s❤❛❧❧ ♣r♦✈✐❞❡ ❛ ♥❡❛r❧② ❝♦♠♣❛r❛❜❧❡ ♣❡r❢♦r♠❛♥❝❡ t♦
❝❛♠❡r❛✲❜❛s❡❞ s②st❡♠s ❜② ❖♣t✐❚r❛❝❦ ♦r ❱✐❝♦♥ ❛t ❛
♠✉❝❤ ❧♦✇❡r ❝♦st ❛♥❞ s❡t✉♣ ❝♦♠♣❧❡①✐t②✱ ❝❢✳ ❤tt♣✿✴✴✇✇✇✳
r♦❛❞t♦✈r✳❝♦♠✴✈❛❧✈❡✲s❡❧❧✲❜❛s❡✲st❛t✐♦♥s✲❞✐r❡❝t❧②✲
❧♦✇❡r✲❜❛rr✐❡r✲st❡❛♠✈r✲tr❛❝❦✐♥❣✲❞❡✈❡❧♦♣♠❡♥t✴ ✭❧❛st
r❡tr✐❡✈❡❞ ❋❡❜r✉❛r② ✷✼✱ ✷✵✶✼✮✳

❛s ❛ str❡❡t✱ ♣❡❞❡str✐❛♥ ❛r❡❛✱ ♦r ♣❛r❦ ❛r❡ r❡❝♦❣✲
♥✐s❛❜❧❡ ❜② t②♣✐❝❛❧ s♦✉♥❞s ❧✐❦❡ ❝❛rs✱ ❢♦♦tst❡♣s✱
✈♦✐❝❡s✱ ❝r✐❝❦❡ts✱ ❛♥ ❛❡r♦♣❧❛♥❡ ♦r r❛✐♥✳ ❚❤❡② ❛♣✲
♣❡❛r t♦ ❝♦♠❡ ❢r♦♠ ❞✐✛❡r❡♥t ❞✐r❡❝t✐♦♥s ❛r♦✉♥❞
t❤❡ ❧✐st❡♥❡r✳ ❲❤❡♥ ✇❛❧❦✐♥❣ ❛r♦✉♥❞ ❣✉✐❞❡❞ ❜②
❧✐st❡♥✐♥❣ ✐t t✉r♥s ♦✉t t❤❛t ❡❛❝❤ ♦❢ t❤❡ s♦✉♥❞ s✐t✲
✉❛t✐♦♥s ✐s ✜①❡❞ ❛t ❛ ❝❡rt❛✐♥ ❧♦❝❛t✐♦♥ ✐♥ s♣❛❝❡✳
❚❤❡✐r ♣♦s✐t✐♦♥s ♠❛② ❜❡ ❢♦✉♥❞ ❜② ❜♦❞✐❧② ♠♦✈❡✲
♠❡♥t✱ ❛♣♣r♦❛❝❤✐♥❣✱ t✉r♥✐♥❣ t♦✇❛r❞s ❛♥❞ ❛✇❛②
❢r♦♠ t❤❡ s♦✉♥❞s✳ ❚❤❡② r❡❛❝t ❜② ❧♦✉❞♥❡ss ❛tt❡♥✉✲
❛t✐♦♥ ❛♥❞ ✜❧t❡r✐♥❣ ♦♥ ✐♥❝r❡❛s✐♥❣ ❞✐st❛♥❝❡ ❛♥❞ ❞✐✲
r❡❝t✐♦♥❛❧ ❝❤❛♥❣❡s r❡❧❛t✐✈❡ t♦ t❤❡ ❧✐st❡♥❡r✬s ❤❡❛❞✱
❝♦♠♣❡♥s❛t✐♥❣ ❤✐s ♠♦✈❡♠❡♥ts ❛♥❞ t❤✉s r❡s✉❧t✲
✐♥❣ ✐♥ ❛ ♣❡r❝❡✐✈❡❞ st❡❛❞② ❝♦♥✜❣✉r❛t✐♦♥ ✐♥s❝r✐❜❡❞
✐♥t♦ t❤❡ s✉rr♦✉♥❞✐♥❣ s♣❛❝❡✳ ❲❤❡♥ t❤❡ ❧✐st❡♥❡r
r❡❛❝❤❡s ❡①❛❝t❧② t❤❡ s❛♠❡ ❧♦❝❛t✐♦♥ ❛s ❛ s♦✉♥❞ s✐t✲
✉❛t✐♦♥✱ ✐t ❛♣♣❡❛rs t♦ r❡s✐❞❡ ✐♥s✐❞❡ ❤✐s ❤❡❛❞✳ ❚❤✐s
❛✉❞✐t♦r② ❡✛❡❝t ✐s ❛ ❝♦♠♠♦♥ ❡①♣❡r✐❡♥❝❡ ✇❤❡♥ ❧✐s✲
t❡♥✐♥❣ t♦ s♣❡❛❦❡r✲❜❛s❡❞ st❡r❡♦♣❤♦♥✐❝ s✐❣♥❛❧s ♦♥
❤❡❛❞♣❤♦♥❡s✳ ■♥ t♦t❛❧✱ t❤❡r❡ ❛r❡ s❡✈❡♥ ♦❢ s✉❝❤
s♦✉♥❞ s♣♦ts r❡♣r❡s❡♥t✐♥❣ ❞✐✛❡r❡♥t ❡✈❡r②❞❛② s✐t✲
✉❛t✐♦♥s ✐♥ P❛r✐s✢â♥❡✉r✳

❲❤❡♥ t❤❡ ❧♦❝❛t✐♦♥ ♦❢ ❛ s♦✉♥❞ s✐t✉❛t✐♦♥ ✇❛s
❢♦✉♥❞✱ t❤❡ ❧✐st❡♥❡r ♠❛② ✏❡♥t❡r✑ ✐t ❜② ♣❡r❢♦r♠✐♥❣
❛ ❞✉❝❦✐♥❣ ❣❡st✉r❡✱ t❤❛t ✐s✱ ❜② ❜❡♥❞✐♥❣ ❞♦✇♥ s✉❝❤
t❤❛t t❤❡ ❤❡❛❞ ❣♦❡s ✇❡❧❧ ❜❡❧♦✇ t❤❡ ✉s✉❛❧ st❛♥❞✲
✐♥❣ ♦r ✇❛❧❦✐♥❣ ❤❡✐❣❤t ❛♥❞ s✉❜s❡q✉❡♥t❧② r❛✐s✐♥❣
t❤❡ ❤❡❛❞ ❛❣❛✐♥ ❛t t❤❡ ❢♦✉♥❞ ❧♦❝❛t✐♦♥✳ ❚❤✐s ♣r♦✲
❝❡❞✉r❡ ✐s ❝♦♠♠✉♥✐❝❛t❡❞ t♦ t❤❡ ✈✐s✐t♦rs ❜❡❢♦r❡✲
❤❛♥❞ ✉s✐♥❣ t❤❡ ♠❡t❛♣❤♦r ♦❢ tr❛❝✐♥❣ ✏s♦♥✐❝ ❤❛ts✑
✐♥ s♣❛❝❡ ✇❤✐❝❤ ❝❛♥ ❜❡ ✏♣✉t ♦♥✑ ❛♥❞ ✏t❛❦❡♥ ♦✛✳✑

❊♥t❡r✐♥❣ ❛ s♦✉♥❞ s✐t✉❛t✐♦♥ ②✐❡❧❞s ❛ s✉❜st❛♥✲
t✐❛❧ ❝❤❛♥❣❡ ✐♥ t❤❡ ❛✉❞✐♦ ❧✐st❡♥❡❞ t♦✳ ❚❤❡ ✈✐r✲
t✉❛❧ s♦✉♥❞ s❝❡♥❡r② ❝♦♠♣♦s❡❞ ♦❢ ♠✉❧t✐♣❧❡ ❛♥❡❝✲
❞♦t❛❧ s✐t✉❛t✐♦♥s ❣r❛❞✉❛❧❧② ❞✐s❛♣♣❡❛rs ❡①❝❡♣t ♦❢
t❤❡ s✐♥❣❧❡ s♦✉♥❞ ❜❡✐♥❣ ❡♥t❡r❡❞✳ ❚❤❡ r❡♠❛✐♥✐♥❣
♦♥❡ ✐s ♥♦ ❧♦♥❣❡r r❡♣r❡s❡♥t❡❞ ❜② ❛ s✐♥❣❧❡ s♣♦t ❜✉t
♦♣❡♥s t♦✇❛r❞s ❛ r✐❝❤✱ ❡①♣❛♥❞❡❞ ❛✉❞✐t♦r② s❝❡♥❡
♦♥ ✐ts ♦✇♥ t❤❛t ✐♠♠❡rs❡s t❤❡ ❧✐st❡♥❡r✳ ❚❡❝❤✲
♥✐❝❛❧❧②✱ t❤❡ r❡♥❞❡r❡❞ ❜✐♥❛✉r❛❧ s✐❣♥❛❧ ✐s r❡♣❧❛❝❡❞
❜② ❛ st❛t✐❝ ❜✐♥❛✉r❛❧ r❡❝♦r❞✐♥❣✱ ✇❤✐❝❤ ❛❧s♦ s❡r✈❡s
❛s ❛ ❜❛s✐s ❢♦r t❤❡ s♦✉♥❞ s♦✉r❝❡s ✐♥ t❤❡ ✈✐rt✉❛❧
s❝❡♥❡✳ ❆s t❤❡ r❡❝♦r❞✐♥❣ ✐s st❛t✐❝✱ ✐t ❞♦❡s ♥♦t
❛♥② ❧♦♥❣❡r r❡s♣♦♥❞ t♦ t❤❡ ❧✐st❡♥❡r✬s ♠♦✈❡♠❡♥ts
❜✉t ✐s ❛tt❛❝❤❡❞ t♦ ❤✐s ❤❡❛❞✱ ❛s ❦♥♦✇♥ ❢r♦♠ t❤❡
❝♦♠♠♦♥ ❧✐st❡♥✐♥❣ ❡①♣❡r✐❡♥❝❡ ✇✐t❤ ❤❡❛❞♣❤♦♥❡s✳
■♥ t❡r♠s ♦❢ t❤❡ ❛❜♦✈❡✲♠❡♥t✐♦♥❡❞ ♠❡t❛♣❤♦r✱ t❤❡
✏s♦♥✐❝ ❤❛t✑ t❤❛t ❤❛s ❜❡❡♥ ✏♣✉t ♦♥✑ ✐s ♥♦✇ ✏❝❛r✲
r✐❡❞ ❛r♦✉♥❞✳✑

❚❤❡ ❡♥t❡r❡❞ s♦✉♥❞ s✐t✉❛t✐♦♥ ♠❛② ❜❡ ❧❡❢t ❜②
♣❡r❢♦r♠✐♥❣ t❤❡ ❞✉❝❦✐♥❣ ❣❡st✉r❡ ♦♥❝❡ ♠♦r❡✿ ❜②
❜❡♥❞✐♥❣ ❞♦✇♥ ❛♥❞ ❝♦♠✐♥❣ ✉♣ ❛❣❛✐♥ ❢r♦♠ ✉♥✲
❞❡r♥❡❛t❤ t❤❡ s♦✉♥❞ s♣♦t✱ t❤✉s ✏t❛❦✐♥❣ ♦✛✑ t❤❡
✏s♦♥✐❝ ❤❛t✑ ❛♥❞ ❧❡❛✈✐♥❣ ✐t ✐♥ s♣❛❝❡✳ ❚❤❡ ❜✐♥❛✉r❛❧

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 14

http://www.roadtovr.com/valve-sell-base-stations-directly-lower-barrier-steamvr-tracking-development/
http://www.roadtovr.com/valve-sell-base-stations-directly-lower-barrier-steamvr-tracking-development/
http://www.roadtovr.com/valve-sell-base-stations-directly-lower-barrier-steamvr-tracking-development/

❋✐❣✉r❡ ✷✿ ❙❝❤❡♠❛t✐❝ s❡t✉♣ ♦❢ P❛r✐s✢â♥❡✉r✳

r❡❝♦r❞✐♥❣ ❝r♦ss❢❛❞❡s ✐♥t♦ t❤❡ ✈✐rt✉❛❧ s❝❡♥❡ ❛❣❛✐♥
❝♦♠♣r✐s✐♥❣ ❛❧❧ ♦❢ t❤❡ s❡✈❡♥ s♦✉♥❞ s✐t❛t✐♦♥s✱ ❡❛❝❤
r❡♣r❡s❡♥t❡❞ ❜② ❛ s✐♥❣❧❡ ♣♦✐♥t ✐♥ s♣❛❝❡✳
❲❤❡♥ ❛ s♦✉♥❞ s✐t✉❛t✐♦♥ ✇❛s ❧❡❢t✱ ✐t r❡♠❛✐♥s

❛t t❤❡ ❧♦❝❛t✐♦♥ ✐♥ s♣❛❝❡ ✇❤❡r❡ ✐t ✇❛s ❞r♦♣♣❡❞✳
❚❤❛t ♠❡❛♥s✱ ✇❤❡♥ t❤❡ ❧✐st❡♥❡r ♠♦✈❡s ✇✐t❤ ❛
✏s♦♥✐❝ ❤❛t✑ ❝✉rr❡♥t❧② ✏♣✉t ♦♥✑ t❤❡ s♣❛t✐❛❧ ❝♦♥✜❣✲
✉r❛t✐♦♥ ♦❢ t❤❡ ✈✐rt✉❛❧ s❝❡♥❡ ✐s r❡❛rr❛♥❣❡❞✳ ❚❤❡r❡
✐s ♥♦ ✐♠♠❡❞✐❛t❡ ❛✉❞✐❜❧❡ ❢❡❡❞❜❛❝❦ ❤✐♥t✐♥❣ ❛t t❤✐s
❝❤❛♥❣❡ ❛s ✐♥ t❤✐s ♠♦♠❡♥t s♦❧❡❧② t❤❡ ❡♥t❡r❡❞ s✐t✉✲
❛t✐♦♥ ✐s ♣r❡s❡♥t❡❞ ✐♥ ✐ts ♥♦♥✲r❡❛❝t✐✈❡ ❢♦r♠✳ ❖♥❧②
❛❢t❡r ❤❛✈✐♥❣ r❡✲❡♥t❡r❡❞ t❤❡ ✈✐rt✉❛❧ s❝❡♥❡✱ t❤❡ r❡✲
❝♦♥✜❣✉r❛t✐♦♥ ❜❡❝♦♠❡s ❛✉❞✐❜❧❡✳
❚r❛❝✐♥❣✱ ❡♥t❡r✐♥❣✱ ❧❡❛✈✐♥❣ ❛♥❞ r❡❛rr❛♥❣✐♥❣ ❡✈✲

❡r②❞❛② s♦✉♥❞ s✐t✉❛t✐♦♥s s❤❛❧❧ ❛❧❧♦✇ ❢♦r ❛ ♣❧❛②✲
❢✉❧ ❡①♣❧♦r❛t✐♦♥ ♦❢ t❤❡ s♦✉♥❞ ♠❛t❡r✐❛❧ ❛♥❞ ❛♥
❛ss♦❝✐❛t✐✈❡ r❡❝♦♠❜✐♥❛t✐♦♥ ♦❢ ♥❛rr❛t✐✈❡s ✐♥ t❤❡
s❡♥s❡ ♦❢ ❛♥❡❝❞♦t❛❧ ♠✉s✐❝ ❛s ❝♦✐♥❡❞ ❜② ▲✉❝ ❋❡r✲
r❛r✐✳ ❆❧♦♥❣ ✇✐t❤ t❤❡ ♣❡r❝❡♣t✉❛❧ ❞✐✛❡r❡♥❝❡s ♦❢
r❡♥❞❡r❡❞ ❛♥❞ r❡❛❝t✐✈❡ ❛✉❞✐♦ ❛t ♦♥❡ ❤❛♥❞ ❛♥❞
r❡❝♦r❞❡❞ ❛♥❞ st❛t✐❝ ♠❛t❡r✐❛❧ ♦♥ t❤❡ ♦t❤❡r✱ P❛r✐s✲
✢â♥❡✉r ✐s ❛t t❤❡ s❛♠❡ t✐♠❡ ❛ st✉❞② ♦❢ t❤❡ ♣r♦♣✲
❡rt✐❡s ❛♥❞ ❝♦♥❞✐t✐♦♥s ♦❢ s♦ ❝❛❧❧❡❞ ✐♠♠❡rs✐✈❡ s♣❛✲
t✐❛❧ ♠❡❞✐❛✳

✸ ▼❡❞✐❛✱ s♦❢t✇❛r❡✱ t❡❝❤♥♦❧♦❣②

❙❡✈❡r❛❧ ❦✐♥❞s ♦❢ ♠❡❞✐❛ t❡❝❤♥♦❧♦❣② ❛r❡ ✐♥✈♦❧✈❡❞
✐♥ t❤❡ r❡❛❧✐s❛t✐♦♥ ♦❢ P❛r✐s✢â♥❡✉r✱ ❛♠♦♥❣ t❤❡♠
❛✉❞✐♦ r❡❝♦r❞✐♥❣ ❛♥❞ r❡♣r♦❞✉❝t✐♦♥ ♦✈❡r ❤❡❛❞✲
♣❤♦♥❡s✱ ♦♣t✐❝❛❧ tr❛❝❦✐♥❣ ♦❢ ♣♦s✐t✐♦♥ ❛♥❞ r♦t❛✲
t✐♦♥✱ t❤❡ ❛♣♣❧✐❝❛t✐♦♥ ❧♦❣✐❝ t❤❛t ❡✈❛❧✉❛t❡s t❤❡
tr❛❝❦✐♥❣ ❞❛t❛ ❛♥❞ ✜♥❛❧❧② ❝♦♥tr♦❧s ❞✐✛❡r❡♥t ❧❡✈✲
❡❧s ♦❢ s✐❣♥❛❧ ♣r♦❝❡ss✐♥❣ ❢♦r ❝r❡❛t✐♥❣ t❤❡ ♣r❡s❡♥t❡❞
♦✉t♣✉t✳ ❚❤❡ ❢♦❝✉s ✐♥ t❤✐s ♣❛♣❡r ✐s ♦♥ t❤❡ ❧❛st✲
♠❡♥t✐♦♥❡❞ ❜✉✐❧❞✐♥❣ ❜❧♦❝❦s t❤❛t ❛r❡ r❡♣r❡s❡♥t❡❞
❜② s♦❢t✇❛r❡✱ ✇❤✐❝❤ ❢♦r♠ ❛ ♠❛❥♦r ♣❛rt ♦❢ t❤❡
❛rt✐st✐❝ ❞❡✈❡❧♦♣♠❡♥t✳
■ ❛♠ ❣♦✐♥❣ t♦ ❞✐s❝✉ss t❤❡ ✐♠♣❧❡♠❡♥t❛t✐♦♥ ✇✐t❤

❛ s♣❡❝✐❛❧ ❡♠♣❤❛s✐s ♦♥ t❤❡ ❛♣♣❧✐❝❛t✐♦♥ ♦❢ ❋▲❖❙❙

t♦♦❧s ❛♥❞ t❤❡✐r r❡❧❛t✐♦♥ t♦ t❤❡ ❛rt✐st✐❝ ❝r❡❛t✐♦♥
♣r♦❝❡ss ❛♥❞ ❛❡st❤❡t✐❝ ❛✐♠s✳ ▲✐❦❡ ✐♥ ♠♦st ♦t❤❡r
✐♥t❡r♠❡❞✐❛ ❛rt❡❢❛❝ts✱ t❤❡ ❣❡♥❡r❛❧ ♣✉r♣♦s❡ ❝♦♠✲
♣✉t❡r ❛❝ts ❛s ❛ ❦✐♥❞ ♦❢ ♠❡t❛✲♠❡❞✐✉♠ t❤❛t✱ ♦✇✲
✐♥❣ t♦ ✉♥✐✈❡rs❛❧ ❞✐❣✐t❛❧ ❞❛t❛ r❡♣r❡s❡♥t❛t✐♦♥✱ ❛❧✲
❧♦✇s ❢♦r t❤❡ ❛❝t✉❛❧✐s❛t✐♦♥ ♦❢ ♠♦r❡ s♣❡❝✐✜❝ ♠❡✲
❞✐❛ ♠❛❝❤✐♥❡s ❜② ♠❡❛♥s ♦❢ s♦❢t✇❛r❡ ❬▼❛♥♦✈✐❝❤✱
✷✵✶✸❪✳ ■t s❤❛❧❧ ❜❡ str❡ss❡❞ t❤♦✉❣❤ t❤❛t ❛❧❧ t❤❡
♦t❤❡r ♠❡❞✐❛ ✐♥✈♦❧✈❡❞✱ ✐♥❝❧✉❞✐♥❣ ❛♥❞ ❡s♣❡❝✐❛❧❧②
♥♦♥✲❞✐❣✐t❛❧ ♦♥❡s✱ ❤❛✈❡ ❛♥ ❡q✉❛❧❧② s✐❣♥✐✜❝❛♥t ✐♥✲
✢✉❡♥❝❡ ♦♥ t❤❡ ❛❡st❤❡t✐❝s ♦❢ t❤❡ ✇♦r❦ ✭❢♦r ❛ ❞✐s✲
❝✉ss✐♦♥✱ s❡❡ ❬❘✉♠♦r✐✱ ✷✵✶✼❪✮✳
■♥ t❤❡ ❢♦❧❧♦✇✐♥❣✱ ■ ✇✐❧❧ ♣r❡s❡♥t t❡❝❤♥✐❝❛❧ ❝♦♥✲

s✐❞❡r❛t✐♦♥s ✐♥ str❡tt♦ ✇✐t❤ r❡✢❡❝t✐♦♥s ♦♥ t❤❡
❛rt✐st✐❝ ♣r♦❝❡ss ❛♥❞ ♦♥ t❤❡ ♣r♦♣❡rt✐❡s ♦❢ ♠❡❞✐❛✳

✸✳✶ ❙♦❢t✇❛r❡ ✐♥✈♦❧✈❡❞

P❛r✐s✢â♥❡✉r ✐s r❡❛❧✐s❡❞ ❜② ❝♦♠❜✐♥✐♥❣ ❛ ❢❡✇ s♦❢t✲
✇❛r❡ ❜✉✐❧❞✐♥❣ ❜❧♦❝❦s✱ ❛❧❧ ♦❢ t❤❡♠ ❜❡✐♥❣ ❋▲❖❙❙✳
❚❤❡ ♣r♦❝❡ss✐♥❣ ♦❢ t❤❡ tr❛❝❦✐♥❣ ❞❛t❛✱ ♠♦st ♦❢ t❤❡
s✐❣♥❛❧ ♣r♦❝❡ss✐♥❣ ❛♥❞ t❤❡ ❛♣♣❧✐❝❛t✐♦♥ ❧♦❣✐❝ ✐s ✐♠✲
♣❧❡♠❡♥t❡❞ ✐♥ ❙✉♣❡r❝♦❧❧✐❞❡r✷✳ ❙✉♣❡r❝♦❧❧✐❞❡r ❛❧✲
❧♦✇s ❢♦r ❝♦♥str✉❝t✐♥❣ ♠♦❞✉❧❛r ♠✉❧t✐❝❤❛♥♥❡❧ r❡✲
❛❧t✐♠❡ s✐❣♥❛❧ ♣r♦❝❡ss✐♥❣ ♥❡t✇♦r❦s ❝♦♥tr♦❧❧❡❞ ❜②
❛ ❣❡♥❡r❛❧✲♣✉r♣♦s❡ ♦❜❥❡❝t✲♦r✐❡♥t❡❞ ❧❛♥❣✉❛❣❡✳ ❉❡✲
t❛✐❧s ♦♥ t❤❡ ❜✐♥❛✉r❛❧ r❡♥❞❡r✐♥❣ ✇✐❧❧ ❜❡ ♣r❡s❡♥t❡❞
✐♥ t❤❡ ❢♦❧❧♦✇✐♥❣ s❡❝t✐♦♥s✱ ✇❤✐❝❤ ✇✐❧❧ ❛❧s♦ ♠❛❦❡
❝❧❡❛r ✇❤② ❛♥ ♦♣❡♥ ❛♥❞ ✢❡①✐❜❧❡ ❢r❛♠❡✇♦r❦ ❧✐❦❡
❙✉♣❡r❝♦❧❧✐❞❡r ✐s ♥❡❝❡ss❛r② ❢♦r ❞❡✈❡❧♦♣✐♥❣ t❤✐s ✐♥✲
st❛❧❧❛t✐♦♥✱ r❛t❤❡r t❤❛♥ ❛ ♠♦♥♦❧✐t❤✐❝✱ ♦♣t✐♠✐s❡❞
s♦❢t✇❛r❡ ♣❛❝❦❛❣❡ ✭❝❢✳ ❬▼❛❣♥✉ss♦♥✱ ✷✵✵✽❪✮✳
▼♦st ❜✐♥❛✉r❛❧ s②♥t❤❡s✐s t❡❝❤♥✐q✉❡s ✐♥✈♦❧✈❡ ❛

♠❛tr✐① ♦❢ r❡❛❧t✐♠❡ ❝♦♥✈♦❧✉t✐♦♥s✱ s♦♠❡t✐♠❡s ✉s✲
✐♥❣ r♦♦♠ ✐♠♣✉❧s❡ r❡s♣♦♥s❡s ♦❢ s❡✈❡r❛❧ s❡❝♦♥❞s
❞✉r❛t✐♦♥✳ ■♥ ❡❛r❧✐❡r ✈❡rs✐♦♥s✱ P❛r✐s✢â♥❡✉r ✉s❡s
✷✹ ❜✐♥❛✉r❛❧ r♦♦♠ ✐♠♣✉❧s❡ r❡s♣♦♥s❡s ✭❇❘■❘✮ ♦❢
✻✹ ❦ s❛♠♣❧❡s ❡❛❝❤✱ ✐♥ ❛ ❧❛t❡r ✈❡rs✐♦♥ ✶✷ ♦❢ t❤♦s❡
❇❘■❘s ♣❧✉s ✸✻ ❢r❡❡✲✜❡❧❞ t✇♦✲❝❤❛♥♥❡❧ r❡s♣♦♥s❡s
♦❢ ✺✶✷ s❛♠♣❧❡s✳ ❋♦r ♣❡r❢♦r♠✐♥❣ t❤❡ ❝♦♥✈♦❧✉t✐♦♥✱
❏❝♦♥✈♦❧✈❡r ❜② ❋♦♥s ❆❞r✐❛❡♥s❡♥ ✐s ✉s❡❞ ❬❆❞r✐✲
❛❡♥s❡♥✱ ✷✵✵✻❜❪✳ ■t ♣r♦✈✐❞❡s ✈❡r② ❡✣❝✐❡♥t✱ ❧♦✇✲
❧❛t❡♥❝②✱ ♠✉❧t✐✲t❤r❡❛❞❡❞ ❝♦♥✈♦❧✉t✐♦♥ ✇❤✐❧❡ ♠❛✲
tr✐❝❡s ♦❢ ❛♥② ❧❛②♦✉t ❛♥❞ ♦❢ ❧❛r❣❡ s✐③❡s ♠❛② ❜❡
❝♦♥✜❣✉r❡❞✳ ❙✉♣❡r❝♦❧❧✐❞❡r ❛♥❞ ❏❝♦♥✈♦❧✈❡r ❛r❡
❝♦♥♥❡❝t❡❞ ✈✐❛ t❤❡ ❏❛❝❦ ❆✉❞✐♦ ❈♦♥♥❡❝t✐♦♥ ❑✐t✸✳

❚❤❡ ❜✐♥❛✉r❛❧ r♦♦♠ ✐♠♣✉❧s❡ r❡s♣♦♥s❡s ✭❜✉t
♥♦t t❤❡ ❢r❡❡✲✜❡❧❞ ♦♥❡s✮ ✉s❡❞ ❢♦r t❤❡ ❝♦♥✈♦❧✉t✐♦♥
✇❡r❡ ♠❡❛s✉r❡❞ ✐♥ t❤❡ ❈✉❜❡ ❧❛❜♦r❛t♦r② ❛t ■♥✲
st✐t✉t❡ ♦❢ ❊❧❡❝tr♦♥✐❝ ▼✉s✐❝ ❛♥❞ ❆❝♦✉st✐❝s ●r❛③
✭■❊▼✮ ❬❘✉♠♦r✐ ❡t ❛❧✳✱ ✷✵✶✵❪✳ ❋♦r t❤❡ ♠❡❛s✉r❡✲

✷❤tt♣✿✴✴s✉♣❡r❝♦❧❧✐❞❡r✳❣✐t❤✉❜✳✐♦ ✭❧❛st r❡tr✐❡✈❡❞
❋❡❜r✉❛r② ✷✽✱ ✷✵✶✼✮

✸❤tt♣✿✴✴✇✇✇✳❥❛❝❦❛✉❞✐♦✳♦r❣ ✭❧❛st r❡tr✐❡✈❡❞ ❋❡❜r✉✲
❛r② ✷✽✱ ✷✵✶✼✮

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 15

http://supercollider.github.io
http://www.jackaudio.org

♠❡♥ts✱ ❛ ❝✉st♦♠✐s❡❞ ✈❡rs✐♦♥ ♦❢ ❆❧✐❦✐✱ ❛❣❛✐♥ ❜②
❋♦♥s ❆❞r✐❛❡♥s❡♥✱ ✇❛s ✉s❡❞ ❬❆❞r✐❛❡♥s❡♥✱ ✷✵✵✻❛❪✳
❈✉st♦♠✐s❛t✐♦♥s ✐♥❝❧✉❞❡ ❛ ❤✐❣❤❡r ♥✉♠❜❡r ♦❢ s✉♣✲
♣♦rt❡❞ ❝❤❛♥♥❡❧s ❛♥❞ s♦♠❡ ❛✉t♦♠❛t✐♦♥ ❢❛❝✐❧✐t✐❡s✱
✇❤✐❝❤ ✇❡r❡ ✉s❡❞ ✐♥ ❝♦♥❥✉♥❝t✐♦♥ ✇✐t❤ ❙✉♣❡r❝♦❧✲
❧✐❞❡r ❬❍♦❧❧❡r✇❡❣❡r ❛♥❞ ❘✉♠♦r✐✱ ✷✵✶✸❪✳
❊❞✐t✐♥❣ ❛♥❞ ♣r♦❝❡ss✐♥❣ ♦❢ t❤❡ ✜❡❧❞ r❡❝♦r❞✐♥❣s

✇❛s ♣❡r❢♦r♠❡❞ ✉s✐♥❣ ❆r❞♦✉r✹✳

✸✳✷ ❇✐♥❛✉r❛❧ r❡♥❞❡r✐♥❣

❆t ✜rst ❣❧❛♥❝❡✱ t❤❡ r❡♥❞❡r✐♥❣ ♦❢ t❤❡ ✈✐rt✉❛❧ ❛✉✲
❞✐t♦r② s❝❡♥❡ ✐♥ P❛r✐s✢â♥❡✉r s❡❡♠s t♦ ❜❡ ❛ st❛♥✲
❞❛r❞ ❡♥❣✐♥❡❡r✐♥❣ ♣r♦❜❧❡♠ ♦❢ ♠♦❞❡r❛t❡ ❝♦♠♣❧❡①✲
✐t②✱ ✇❤✐❝❤ ✐s ❛ ❝♦rr❡❝t ❛ss✉♠♣t✐♦♥ t♦ ❛ ❧❛r❣❡ ❡①✲
t❡♥t✳ ❚❤❡r❡ ❛r❡ s❡✈❡♥ ♠♦♥❛✉r❛❧ ♣♦✐♥t s♦✉r❝❡s✱
♥♦t t♦♦ ♠❛♥②✱ ❡❛❝❤ ✇✐t❤ t❤❡ s❛♠❡ tr✐✈✐❛❧✱ t❤❛t
✐s✱ ♦♠♥✐✲❞✐r❡❝t✐♦♥❛❧ r❛❞✐❛t✐♦♥ ♣❛tt❡r♥✱ t♦ ❜❡ r❡♥✲
❞❡r❡❞ ✐♥ ❛ s♦ ❢❛r ♥♦t ❢✉rt❤❡r s♣❡❝✐✜❡❞ ✈✐rt✉❛❧
s♣❛❝❡✱ ♣r♦❜❛❜❧② ♥♦t r❡q✉✐r✐♥❣ ❛ t♦♦ ❝♦♠♣❧❡① ✉♥✲
❞❡r❧②✐♥❣ ♠♦❞❡❧✳ ❚❤❡ s❝❡♥❡ s❤♦✉❧❞ ❜❡ r❡♥❞❡r❡❞
❢♦r ♦♥❡ ❞②♥❛♠✐❝❛❧❧② ♠♦✈✐♥❣ ❧✐st❡♥❡r ❛❝❝♦r❞✐♥❣ t♦
tr❛❝❦✐♥❣ ❞❛t❛ ✐♥♣✉t✳ ❚❤❡ s♦✉♥❞ s♦✉r❝❡s ❛r❡ ♥♦t
❞②♥❛♠✐❝❛❧❧② ♠♦✈✐♥❣✱ ❛♥❞ ✐❢ s♦✱ t❤❡✐r ♠♦✈❡♠❡♥ts
❛r❡ ♥♦t ❛✉❞✐❜❧❡ ❛t t❤❡ s❛♠❡ t✐♠❡✱ ✇❤✐❝❤ ♠✐❣❤t
❛❧❧♦✇ ❢♦r ♥♦♥✲r❡❛❧t✐♠❡ ♦♣t✐♠✐s❛t✐♦♥s✳ ❋✉rt❤❡r✲
♠♦r❡✱ ♦♥❧② ♦♥❡ s♦✉r❝❡ ✐s ♠♦✈✐♥❣ ❛t ❛ t✐♠❡✳
❉❡s♣✐t❡ ✐ts ♠♦❞❡r❛t❡ t❡❝❤♥✐❝❛❧ ❞❡♠❛♥❞s✱

P❛r✐s✢â♥❡✉r ✐s ♥♦t ❛❜♦✉t ❞❡✈❡❧♦♣✐♥❣ ♦r ✉s✐♥❣ ❛♥
✏♦♣t✐♠❛❧✑ ❜✐♥❛✉r❛❧ r❡♥❞❡r✐♥❣ t❡❝❤♥✐q✉❡✳ ■♥ ❢❛❝t✱
t❤❡ ❛rt✐st✐❝ r❡✢❡❝t✐♦♥ ✐s t❛r❣❡t❡❞ ❛t t❤❡ q✉❡s✲
t✐♦♥ ♦❢ ✇❤❛t ✏♦♣t✐♠❛❧✑ ❝♦✉❧❞ ❛❝t✉❛❧❧② ♠❡❛♥ ✐♥
t❤✐s ❝♦♥t❡①t✳ ❉♦❡s ✐t ♠❡❛♥ t♦ ♠♦❞❡❧ ❛s ❛❝❝✉✲
r❛t❡❧② ❛s ♣♦ss✐❜❧❡ t❤❡ ♣❤②s✐❝❛❧ s♦✉♥❞ ♣r♦♣❛❣❛✲
t✐♦♥ st❛rt✐♥❣ ❢r♦♠ t❤❡ ❡♠✐tt❡rs✱ t❤❡ ❝♦♥tr✐❜✉t✐♦♥
♦❢ t❤❡ s✉rr♦✉♥❞✐♥❣ s♣❛❝❡ t♦ t❤❡ r❛❞✐❛t❡❞ s♦✉♥❞
✇❛✈❡s✱ t❤❡✐r ❛rr✐✈❛❧ ❛t t❤❡ ❤✉♠❛♥ ❤❡❛❞✱ ✜♥❛❧❧②
t❤❡ ❡✛❡❝t ♦❢ ❛ t✇♦✲❝❤❛♥♥❡❧✱ s♣❛❝❡❞ ❛♥❞ ✐♥❞✐✈✐❞✉✲
❛❧❧② ✜❧t❡r❡❞ ♣r❡ss✉r❡ r❡❝❡✐✈❡r ❛rr❛②✱ ♦✉r ❤❡❛r✐♥❣
❛♣♣❛r❛t✉s❄ ■♥ ♦t❤❡r ✇♦r❞s✿ ❞♦❡s ✐t ♠❡❛♥ t♦
❝❛♣t✉r❡ t❤❡ ♣❤②s✐❝s ♦❢ ❛♥ ❡①✐st✐♥❣ ♦r ✐♠❛❣✐♥❡❞
r❡❛❧✲✇♦r❧❞ s✐t✉❛t✐♦♥ ❛♥❞ s✐♠✉❧❛t❡ ✐t❄
❖❜✈✐♦✉s❧②✱ t❤❡r❡ ✐s ♥♦ ❝♦rr❡s♣♦♥❞✐♥❣ r❡❛❧✲

✇♦r❧❞ s✐t✉❛t✐♦♥ t♦ s❡✈❡♥ s♣❛t✐❛❧ ✜❡❧❞ r❡❝♦r❞✐♥❣s
r❡❞✉❝❡❞ t♦ ♠♦♥❛✉r❛❧ s✐❣♥❛❧s ❛♥❞ ♣✉t ✐♥t♦ ❛ ♥❛✈✲
✐❣❛❜❧❡ ✈✐rt✉❛❧ s♣❛❝❡✳ P♦t❡♥t✐❛❧❧②✱ ❛♥ ✐♥st❛❧❧❛t✐♦♥
♦❢ s❡✈❡♥ ❧♦✉❞s♣❡❛❦❡rs ❞✐str✐❜✉t❡❞ ✐♥ s♣❛❝❡ ❛♥❞
❡❛❝❤ ♣❧❛②✐♥❣ ❜❛❝❦ ♦♥❡ ♦❢ t❤❡ r❡❝♦r❞✐♥❣s ❝♦✉❧❞
❝♦♠❡ ❝❧♦s❡ ♣❤②s✐❝❛❧❧② ❜✉t t❤❡ ♠❡r❡ t❤♦✉❣❤t ❡①✲
♣❡r✐♠❡♥t ♠❛❦❡s ❡✈✐❞❡♥t t❤❛t t❤❡ ❛rt✐st✐❝ ♣♦✐♥t
✇♦✉❧❞ ❜❡ ❡♥t✐r❡❧② ♠✐ss❡❞✳ ❆❧t❤♦✉❣❤ t❤❡ ♥❛✈✐❣❛✲
t✐♦♥ ❛s♣❡❝t ♠❛② ❜❡ r❡t❛✐♥❡❞ ✐♥ ♣r✐♥❝✐♣❧❡✱ ❡❛❝❤ ♦❢
t❤❡ s♦✉♥❞ s♣♦ts ✇♦✉❧❞ ❜❡ r❡♣r❡s❡♥t❡❞ ❜② ❛ ♣❤②s✲
✐❝❛❧ ♦❜❥❡❝t✱ ❜❡✐♥❣ ❜♦t❤ ❛♥ ♦❜st❛❝❧❡ ❢♦r ♠♦✈✐♥❣ ✐♥

✹❤tt♣✿✴✴❛r❞♦✉r✳♦r❣ ✭❧❛st r❡tr✐❡✈❡❞ ❆♣r✐❧ ✸✱ ✷✵✶✼✮

s♣❛❝❡ ❛♥❞ ❛ ❤✐♥❞r❛♥❝❡ ❢♦r t❤❡ ♦r✐❡♥t❛t✐♦♥ ❜② ❧✐s✲
t❡♥✐♥❣ ❞✉❡ t♦ ✐ts ✈✐s✉❛❧ ♣r❡s❡♥❝❡✳ ❆♣❛rt ❢r♦♠
t❤❛t✱ s✉❝❤ ❛♥ ✐♥st❛❧❧❛t✐♦♥ ✇♦✉❧❞ ❧❛❝❦ t❤❡ r❡❛❝✲
t✐✈❡ ❝❛♣❛❜✐❧✐t② ♦❢ ❡♥t❡r✐♥❣ ♦♥❡ ♦❢ t❤❡ r❡❝♦r❞✐♥❣s✳
■ ✇r♦t❡ t❤❛t t❤❡ ❡♥✈✐s✐♦♥❡❞ ✏❤❛r❞✇❛r❡✑ r❡♣❧✐✲

❝❛t✐♦♥ ♦❢ t❤❡ ✈✐rt✉❛❧ s❝❡♥❡ ✏❝♦✉❧❞ ❝♦♠❡ ❝❧♦s❡
♣❤②s✐❝❛❧❧②✑ ❛♥❞ ✏♠❛② ❜❡ r❡t❛✐♥❡❞ ✐♥ ♣r✐♥❝✐♣❧❡✑
t♦ ✐♥❞✐❝❛t❡ t❤❛t t❤❡ r❡♥❞❡r❡❞ s❝❡♥❡ ❛♥❞ ✐ts ♣❤②s✲
✐❝❛❧ ❝♦✉♥t❡r♣❛rt ❤❛✈❡ ♥♦t❤✐♥❣ ✐♥ ❝♦♠♠♦♥ ✐♥
t❡r♠s ♦❢ s♦✉♥❞ ♣r♦♣❛❣❛t✐♦♥ ♣r♦♣❡rt✐❡s ❛♥❞ r❡❛❝✲
t✐✈❡ ❜❡❤❛✈✐♦✉r✳ ❚❤❡r❡ ✐s ♥♦ ❡✈✐❞❡♥❝❡ ✇❤❛ts♦❡✈❡r
✇❤② t❤❡ ✈✐rt✉❛❧ s❝❡♥❡ s❤♦✉❧❞ ❜❡ ❞❡s✐❣♥❡❞ s✉❝❤
t❤❛t ✐ts ❛❝♦✉st✐❝❛❧ ♣r♦♣❡rt✐❡s ♠❛t❝❤ t❤♦s❡ ♦❢ r❡✲
❛❧✐t②✳ ❘❛t❤❡r ✐ts ♣❡r❝❡♣t✐♦♥ ❛♥❞ ❝♦❣♥✐t✐♦♥✱ t❤❛t
✐s✱ ✐ts ✐♥t❡❣r❛❧ ❛❡st❤❡t✐❝ ❡①♣❡r✐❡♥❝❡✱ s❤❛❧❧ ♣r♦✲
✈♦❦❡ ❛♥ ✐♠❛❣✐♥❛t✐♦♥ t❤❛t s✉♣♣♦rts t❤❡ ❢✉rt❤❡r
❡♥❣❛❣❡♠❡♥t ✇✐t❤ t❤❡ ❛rt✇♦r❦✳ ❆❡st❤❡t✐❝ ❡①♣❡✲
r✐❡♥❝❡ ❞❡♣❡♥❞s ♦♥ ♣r❡✈✐♦✉s❧② ♠❛❞❡ ❡①♣❡r✐❡♥❝❡✳
■♥ t❤❡ ❝❛s❡ ♦❢ ♥❛✈✐❣❛t✐♥❣ ❛♥ ❛✉❞✐t♦r② ❡♥✈✐r♦♥✲
♠❡♥t ✐t r❡❧❛t❡s t♦ ♦✉r s♣❛t✐❛❧ ❛✇❛r❡♥❡ss ✇❤✐❝❤ t♦
❞❛t❡ ✐s ♠♦st❧② tr❛✐♥❡❞ ❜② ♦r✐❡♥t❛t✐♦♥ ✐♥ r❡❛❧✐t②✳
❆❣❛✐♥✱ t❤✐s ❞♦❡s ♥♦t ♠❡❛♥ t❤❛t ♠❛t❝❤✐♥❣ ♣❤②s✐✲
❝❛❧ st✐♠✉❧✐ ❛r❡ s✉✣❝✐❡♥t ♦r t❤❡ r✐❣❤t ✇❛② ❛t ❛❧❧ t♦
❡✈♦❦❡ ♠❛t❝❤✐♥❣ ❛✉❞✐t♦r② ✐♠♣r❡ss✐♦♥✳ ■♥ P❛r✐s✲
✢â♥❡✉r✱ ♣r♦❜❛❜❧② ❛♠♦♥❣ ♠❛♥② ♦t❤❡r ❡①❛♠♣❧❡s✱
✐t ✐s ♥♦t ❡✈❡♥ ❞❡s✐r❡❞ ❬❘✉♠♦r✐✱ ✷✵✶✻❪✳

❚❤✐s ❜❛s✐❝ ❛ss✉♠♣t✐♦♥ ❬✳ ✳ ✳ ❪✱ t❤❛t ❛
s✉❜❥❡❝t ✇✐❧❧ ❛❧✇❛②s ❤❡❛r t❤❡ s❛♠❡
s♦✉♥❞ ✇❤❡♥ ❡①♣♦s❡❞ t♦ ✐❞❡♥t✐❝❛❧ s♦✉♥❞
s✐❣♥❛❧s✱ ✐s ♦❜✈✐♦✉s❧② ♥♦t tr✉❡ ❬✳ ✳ ✳ ❪✳ ❨❡t
❬✳ ✳ ✳ ❪✱ ❛✉t❤❡♥t✐❝ r❡♣r♦❞✉❝t✐♦♥ ✐s r❛r❡❧②
r❡q✉✐r❡❞✳ ❬✳ ✳ ✳ ❙❪♦✉♥❞ ♠❛t❡r✐❛❧ ♦♥ t❤❡
r❛❞✐♦ ❛♥❞ ♦♥ ❞✐s❦ ✐s ♣r♦❝❡ss❡❞ ✐♥ s✉❝❤
❛ ✇❛② ❛s t♦ ❛❝❤✐❡✈❡ t❤❡ ♦♣t✐♠❛❧ ❛✉❞✐✲
t♦r② ❡✛❡❝t✱ ❢♦r ✐♥st❛♥❝❡✱ ❢r♦♠ ❛♥ ❛rt✐s✲
t✐❝ ♣♦✐♥t ♦❢ ✈✐❡✇✳ ❬❇❧❛✉❡rt✱ ✶✾✾✼✱ ✸✼✹❪

❇❧❛✉❡rt ❞♦❡s ♥♦t ❡❧❛❜♦r❛t❡ ♦♥ ❤♦✇ ✏t❤❡ ♦♣t✐✲
♠❛❧ ❛✉❞✐t♦r② ❡✛❡❝t✑ ✇♦✉❧❞ ❜❡ ❛♣♣r♦❛❝❤❡❞ ❛♥❞
✇❤❡♥ ✐t ✐s r❡❛❝❤❡❞✳ ❋♦r ❛ r❡❛s♦♥✿ ♣r♦❝❡ss❡❞
s♦✉♥❞ ♠❛t❡r✐❛❧ ✐s ♦♥❧② ♦♥❡ ♣❛rt ♦❢ ❛♥ ✐♥t❡✲
❣r❛❧ ❛❡st❤❡t✐❝❛❧ ❡①♣❡r✐❡♥❝❡❀ ✐♥❞✐✈✐❞✉❛❧ ♣❡r❝❡♣✲
t✐♦♥✱ ✈❛r✐♦✉s ❧❡✈❡❧s ♦❢ ❢❛♠✐❧✐❛r✐t② ✇✐t❤ ❝❡rt❛✐♥
t❡❝❤♥♦❧♦❣✐❡s✱ s✉❜❥❡❝t✐✈❡ ❝♦❣♥✐t✐✈❡ ❝♦♥tr✐❜✉t✐♦♥✱
❝✉❧t✉r❛❧ ❞✐✛❡r❡♥❝❡s ❛r❡ ♦t❤❡rs✳ ❋r♦♠ t❤❡ ✏❛rt✐s✲
t✐❝ ♣♦✐♥t ♦❢ ✈✐❡✇✑ t❤❡r❡ ✐s ♥♦ ❝❧❡❛r ♦♣t✐♠✉♠ ❡✐✲
t❤❡r✿ ❛rt✇♦r❦s ♦♣❡♥ ♣❡r❝❡♣t✉❛❧ s♣❛❝❡s ❢♦r ✐♥✲
❞✐✈✐❞✉❛❧ ❡①♣❧♦r❛t✐♦♥ ❛♥❞ ♦✛❡r ❛ ♠✉❧t✐t✉❞❡ ♦❢
str❛♥❞s ❢♦r ✐♥t❡r♣r❡t❛t✐♦♥✳ ❖❢ ❝♦✉rs❡✱ ❛ ❦✐♥❞ ♦❢
✏❛❡st❤❡t✐❝ ♥✉❝❧❡✉s✑ ❝❛♥ ❜❡ ❛ss✉♠❡❞ t❤❛t ✐s ❝❡♥✲
tr❛❧ t♦ ❜♦t❤ t❤❡ ❛rt✐st✬s ❛♥❞ t❤❡ r❡❝✐♣✐❡♥t✬s r❡✲
✢❡❝t✐♦♥✳ ❚❤❡r❡ ♠❛② ❜❡ ♠♦r❡ ♦r ❧❡ss ❛♣♣r♦♣r✐❛t❡
✇❛②s ♦❢ ❣r❛s♣✐♥❣ ❛♥❞ ❝♦♥✈❡②✐♥❣ ✐t ✉s✐♥❣ ♠❡❞✐❛✱
❜✉t ❛ s✐♥❣❧❡ ♦♣t✐♠❛❧ ♦♥❡ ✐s ✉♥❧✐❦❡❧② t♦ ❡①✐st✳

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 16

http://ardour.org

❉✉❡ t♦ t❤❡ ❛❜s❡♥❝❡ ♦❢ ❝♦♠♣✉❧s♦r② r❡❛❧✐s❛t✐♦♥
s❝❤❡♠❡s ✐♥ ❛♥ ❛rt✐st✐❝ ❝♦♥t❡①t✱ t❤❡ r❡♥❞❡r✐♥❣
t❡❝❤♥✐q✉❡s ❛❞❛♣t❡❞ ❢♦r P❛r✐s✢â♥❡✉r✱ t❤❡ s♦✉♥❞
♣r♦♣❛❣❛t✐♦♥ ❧❛✇s ♠♦❞❡❧❧❡❞ ✐♥ ❛♥❞ t❤❡ r✉❧❡s ♦❢
r❡❛❝t✐✈❡ ❜❡❤❛✈✐♦✉r ❛♣♣❧✐❡❞ t♦ t❤❡ ✈✐rt✉❛❧ ❡♥✈✐✲
r♦♥♠❡♥t ❛r❡ ❢♦✉♥❞ ❜② ❡①♣❡r✐♠❡♥t❛t✐♦♥ ❛♥❞ ✐♥✲
t✉✐t✐♦♥✳ ❚❤❡ r❡❢❡r❡♥❝❡ ❛r❡ ♥♦t ❡❛r s✐❣♥❛❧s ✐♥
r❡❛❧✐t② ❜✉t t❤❡ ❝♦♥❞✐t✐♦♥s ❛♥❞ ✐♠♣❧✐❝❛t✐♦♥s ♦❢
♠❡❞✐❛✳ ❍❡r❡✱ t❤✐s ✐♥❝❧✉❞❡s ❧✐♠✐t❛t✐♦♥s ♦❢ s♣❛❝❡
❛♥❞ tr❛❝❦✐♥❣ ❝❛♣❛❜✐❧✐t②✱ ❝♦♠♣✉t❛t✐♦♥❛❧ ♣♦✇❡r
❛♥❞ ✐♠♣❧❡♠❡♥t❛t✐♦♥ ❢❡❛s✐❜✐❧✐t②✱ ❛♥❞✱ ♠♦st ✐♠✲
♣♦rt❛♥t❧②✱ t❤❡ ❝✉❧t✉r❛❧ t❡❝❤♥✐q✉❡ ♦❢ ❤❡❛❞♣❤♦♥❡
❧✐st❡♥✐♥❣ ❛♥❞ ✐ts ❤❡r✐t❛❣❡ ✭❢♦r ❛ ❞✐s❝✉ss✐♦♥ ♦♥ t❤❡
❧❛tt❡r✱ s❡❡ ❬❘✉♠♦r✐✱ ✷✵✶✼❪✮✳

✸✳✷✳✶ ❱✐rt✉❛❧ ❆♠❜✐s♦♥✐❝s

❊❛r❧✐❡r ✐♠♣❧❡♠❡♥t❛t✐♦♥s ♦❢ P❛r✐s✢â♥❡✉r ✉s❡ ❛
♠♦❞✐✜❡❞ ✈✐rt✉❛❧ ❆♠❜✐s♦♥✐❝s ❛♣♣r♦❛❝❤ ❢♦r r❡♥✲
❞❡r✐♥❣ t❤❡ ❜✐♥❛✉r❛❧ s❝❡♥❡ ❬◆♦✐st❡r♥✐❣ ❡t ❛❧✳✱
✷✵✵✸❪✳ ■♥st❡❛❞ ♦❢ s②♥t❤❡s✐s❡❞ r♦♦♠ ❛❝♦✉s✲
t✐❝s ❛♥❞ ❢r❡❡✲✜❡❧❞ ✭✐✳ ❡✳✱ ❛♥❡❝❤♦✐❝✮ ✐♠♣✉❧s❡ r❡✲
s♣♦♥s❡s✱ ♠❡❛s✉r❡❞ ❜✐♥❛✉r❛❧ r♦♦♠ ✐♠♣✉❧s❡ r❡✲
s♣♦♥s❡s ✭❇❘■❘✮ ❛r❡ ✉s❡❞✳ ❚❤✐s ✇❛②✱ t❤❡ ✈✐r✲
t✉❛❧ s❝❡♥❡ ✐s ❡♠❜❡❞❞❡❞ ✐♥ ❝❛♣t✉r❡❞ r❡❛❧✲r♦♦♠
❛❝♦✉st✐❝ ♣r♦♣❡rt✐❡s r❛t❤❡r t❤❛♥ ❛ s✐♠♣❧✐✜❡❞
♠♦❞❡❧✳ ❋✉rt❤❡r♠♦r❡✱ t❤❡ ❇❘■❘s ✇❡r❡ ♠❡❛s✉r❡❞
✐♥ t❤❡ ❧♦❝❛t✐♦♥ ♦❢ t❤❡ ✇♦r❦✬s ✜rst ♣r❡s❡♥t❛t✐♦♥✱
t❤❡ ❈✉❜❡ ❧❛❜♦r❛t♦r② ❛t ■❊▼ ●r❛③✱ s✉❝❤ t❤❛t
t❤❡ ✈✐rt✉❛❧ ❛❝♦✉st✐❝s ♣r❡s❡♥t❡❞ ✈✐❛ ❤❡❛❞♣❤♦♥❡s
♠❛t❝❤❡❞ t❤❛t ♦❢ t❤❡ s✉rr♦✉♥❞✐♥❣ r❡❛❧ s♣❛❝❡✳ ❚❤❡
✐❞❡❛ ✇❛s t♦ ♣r♦✈♦❦❡ t❤❡ ♥♦t✐♦♥ ♦❢ ❛♥ ♦✈❡r❧❛② ✐♥✲
s❝r✐❜❡❞ ✐♥t♦ t❤❡ ❡①✐st✐♥❣ ❛✉r❛❧ s♣❛❝❡ r❛t❤❡r t❤❛♥
r❡♣❧❛❝✐♥❣ ✐t ❜② ❛ ❞✐✛❡r❡♥t ♦♥❡✳
❖♥❡ ❞✐s❛❞✈❛♥t❛❣❡ ♦❢ ❝♦♠❜✐♥✐♥❣ t❤❡ ✈✐rt✉❛❧

❆♠❜✐s♦♥✐❝s ❛♣♣r♦❛❝❤ ✇✐t❤ ❇❘■❘s ✐s t❤❛t t❤❡
♣r♦♣♦s❡❞ r❡♥❞❡r✐♥❣ ♦♣t✐♠✐s❛t✐♦♥s ❝❛♥♥♦t ❜❡ ❛♣✲
♣❧✐❡❞ ✉♥❧❡ss t❤❡ ♠❡❛s✉r❡❞ r♦♦♠ ❛❝♦✉st✐❝s ✐s ❛s✲
s✉♠❡❞ t♦ ❜❡ ❢✉❧❧② s②♠♠❡tr✐❝ ✭❝❢✳ ❬◆♦✐st❡r♥✐❣ ❡t
❛❧✳✱ ✷✵✵✸❪✮✳ ▼♦r❡ s✐❣♥✐✜❝❛♥t❧②✱ t❤❡ ✐♠♣❧❡♠❡♥t❛✲
t✐♦♥ ✐s ✏✐♥❝♦rr❡❝t✑ ✐♥ t❡r♠s ♦❢ ❝♦♠♠✉♥✐❝❛t✐♦♥s
❡♥❣✐♥❡❡r✐♥❣✿ ❆s t❤❡ ❇❘■❘s ✇❡r❡ ♦♥❧② ♠❡❛s✉r❡❞
❢♦r ❛ s✐♥❣❧❡ ♦r✐❡♥t❛t✐♦♥ ♦❢ t❤❡ ❞✉♠♠② ❤❡❛❞✱ r♦✲
t❛t✐♦♥ ✐♥ t❤❡ ❆♠❜✐s♦♥✐❝s ❞♦♠❛✐♥ ✉♣♦♥ tr❛❝❦✐♥❣
✐♥♣✉t r❡s✉❧ts ✐♥ t❤❡ r♦♦♠ ❛❝♦✉st✐❝s ❜❡✐♥❣ t✉r♥❡❞
❛❧♦♥❣ ✇✐t❤ t❤❡ ❧✐st❡♥❡r ✇❤✐❧❡ t❤❡ r❡❧❛t✐✈❡ s♦✉r❝❡
♣♦s✐t✐♦♥s ❛r❡ ❝♦rr❡❝t❧② ❛❞❥✉st❡❞✳ ❚❤❡ r❡s✉❧t✐♥❣
♠✐s❧❡❛❞✐♥❣ s♣❛t✐❛❧ ❝✉❡s ♠❛② ❞❡❣r❛❞❡ ❧♦❝❛❧✐s❛✲
t✐♦♥ ❛❝❝✉r❛❝② ❛♥❞ ❡①t❡r♥❛❧✐s❛t✐♦♥ ✭❝❢✳ ❬❘✉♠♦r✐✱
✷✵✶✼❪✮✳
❚❤❡ ✈✐rt✉❛❧ ❆♠❜✐s♦♥✐❝s ❛♣♣r♦❛❝❤ ❤❛s ❜❡❡♥

✐♥❝♦r♣♦r❛t❡❞ ✐♥ P❛r✐s✢â♥❡✉r ✉s✐♥❣ ♠♦❞✐✜❡❞
❝❧❛ss❡s ♦❢ t❤❡ ❆♠❜■❊▼ ❙✉♣❡r❝♦❧❧✐❞❡r q✉❛r❦✺✳

✺❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴s✉♣❡r❝♦❧❧✐❞❡r✲q✉❛r❦s✴
❆♠❜■❊▼ ✭❧❛st r❡tr✐❡✈❡❞ ❋❡❜r✉❛r② ✷✽✱ ✷✵✶✼✮

Crossfade Source treatment

Source treatment

Distance model

Ambisonic encoder

(File Player, Live Input, etc.)

Sound Source 1

Ambisonic rotator

Order weighting

Ambisonic decoder

HRRIR convolution

Application control

Tracking data input

Crossfade Source treatment

Source treatment

Distance model

Ambisonic encoder

(File Player, Live Input, etc.)

Sound Source 2
(File Player, Live Input, etc.)

Sound Source 3 ...

Binaural Output

A
m

b
is

o
n
ic

 B
u
s

B
in

a
u
ra

l
B

u
s

A
p
p
lic

a
ti
o
n
 C

o
n
tr

o
l
D

a
ta

T
ra

c
k
in

g
 D

a
ta

❋✐❣✉r❡ ✸✿ ❇❧♦❝❦ ❞✐❛❣r❛♠ ♦❢ P❛r✐s✢â♥❡✉r ✉s✐♥❣
t❤❡ ✈✐rt✉❛❧ ❆♠❜✐s♦♥✐❝s ❛♣♣r♦❛❝❤✳

✸✳✷✳✷ ❉✐st❛♥❝❡ ♠♦❞❡❧

❈❧❛ss✐❝❛❧ ❆♠❜✐s♦♥✐❝s ❞♦❡s ♥♦t ❡♥❝♦❞❡ ❞✐st❛♥❝❡
✐♥❢♦r♠❛t✐♦♥ ♦❢ s♦✉♥❞ s♦✉r❝❡s✱ ♦♥❧② ❞✐r❡❝t✐♦♥s✱
t❤❛t ✐s✱ s♦✉r❝❡s ❛r❡ ♣❧❛♥❡ ✇❛✈❡s✳ ❊①t❡♥s✐♦♥s ❡①✲
✐st t♦ t❛❦❡ ✐♥t♦ ❛❝❝♦✉♥t t❤❡ ♥❡❛r ✜❡❧❞ ❡✛❡❝t ♦❢ t❤❡
♣r♦❥❡❝t✐♦♥ s②st❡♠ ❜② ❛♣♣r♦♣r✐❛t❡ ✜❧t❡rs ❬❉❛♥✐❡❧✱
✷✵✵✸❪ ♦r t♦ ✉s❡ ❛♥ ❛❞❞✐t✐♦♥❛❧ ❆♠❜✐s♦♥✐❝s ❝❤❛♥✲
♥❡❧ ❢♦r ❡♥❝♦❞✐♥❣ s♦✉r❝❡ ❞✐st❛♥❝❡s ❬P❡♥❤❛✱ ✷✵✵✽❪✳
❙t✐❧❧✱ t❤❡s❡ ❞♦ ♥♦t ✐♥❝❧✉❞❡ ♠♦❞❡❧s ❢♦r tr❛♥s❧❛t✐♥❣
❛ ❞✐st❛♥❝❡ ✈❡❝t♦r ✐♥t♦ ♣r♦❝❡ss✐♥❣ ♣❛r❛♠❡t❡rs ❧✐❦❡
❛♠♣❧✐t✉❞❡ ❛tt❡♥✉❛t✐♦♥✱ ❧♦✇✲♣❛ss ✜❧t❡r✐♥❣✱ ♦r t❤❡
r❛t✐♦ ♦❢ ❞✐r❡❝t s✐❣♥❛❧ t♦ r❡✈❡r❜ ❡♥❡r❣②✳
❙❝❤♦❧❛r❧② r❡s❡❛r❝❤ s❤♦✇s t❤❛t ❛✉❞✐t♦r② ❞✐s✲

t❛♥❝❡ ❡st✐♠❛t✐♦♥ ✐s ❤✐❣❤❧② ❞❡♣❡♥❞❡♥t ♦♥ t❤❡
s♦✉r❝❡ ♠❛t❡r✐❛❧ ❛♥❞ ❝❛♥♥♦t ❜❡ r❡❧✐❛❜❧② ♣❡r✲
❢♦r♠❡❞ ❡✈❡♥ ✐♥ r❡❛❧✐t② ❬❩❛❤♦r✐❦✱ ✷✵✵✷❪✳ ■♥ t❤❡
❧✐❣❤t ♦❢ t❤❡ r❡✢❡❝t✐♦♥ ❛❜♦✈❡ ✭s❡❡ s❡❝t✐♦♥ ✸✳✷✮✱
♠♦❞❡❧❧✐♥❣ t❤❡ s♦✉r❝❡ ❞✐st❛♥❝❡ ✐♥ ❛ r❡♥❞❡r❡❞
s❝❡♥❡ ✐s ♥♦t ❛ ♠❡❛♥s ♦❢ r❡❢❡rr✐♥❣ t♦ r❡❛❧✐t② ❜✉t
t♦ t❤❡ ❛❡st❤❡t✐❝ ❢r❛♠❡✇♦r❦ ♦❢ t❤❡ ✐♥st❛❧❧❛t✐♦♥✳
❆♠♣❧✐t✉❞❡ ❛tt❡♥✉❛t✐♦♥ ✐♥ P❛r✐s✢â♥❡✉r ✐s

♠✉❝❤ str♦♥❣❡r t❤❛♥ ✐♥ r❡❛❧✐t② ❛s ❞❡s❝r✐❜❡❞ ❜②
t❤❡ ✐♥✈❡rs❡ sq✉❛r❡❞ ❧❛✇✳ ❖t❤❡r✇✐s❡✱ t❤❡ s❡✈❡♥
s♦✉♥❞ s✐t✉❛t✐♦♥s ✇♦✉❧❞ ♥♦t ❜❡ ❞✐st✐♥❣✉✐s❤❛❜❧❡
❛t ❛❧❧ ❜② ❛♣♣r♦❛❝❤✐♥❣ ♦♥❡ ♦r t❤❡ ♦t❤❡r ❛s t❤❡✐r
❧❡✈❡❧s ✇♦✉❧❞ ❞✐✛❡r t♦♦ ❧✐tt❧❡✱ ❣✐✈❡♥ t❤❡ ❧✐♠✐t❡❞
tr❛❝❦✐♥❣ ✈♦❧✉♠❡ ❛♥❞ t❤❡ r❡❧❛t✐✈❡❧② ❧♦✇ ♠❛①✐✲
♠✉♠ ❞✐st❛♥❝❡s ♦❢ s♦✉r❝❡s✳ ❙✐♠✐❧❛r❧②✱ ❧♦✇✲♣❛ss
✜❧t❡r✐♥❣ ❜② ❛✐r ❛❜s♦r♣t✐♦♥ ✇♦✉❧❞ ❜❡ ❤❛r❞❧② ♥♦✲
t✐❝❡❛❜❧❡ ❛t s✉❝❤ s❤♦rt ❞✐st❛♥❝❡s✱ ✇❤✐❧❡ ✐♥ P❛r✐s✲
✢â♥❡✉r ✐t ✐s ✉s❡❞ ❛s ❛♥ ❛❝♦✉st✐❝❛❧ ✏♠❛❣♥✐✜❡r✑ ❢♦r
t❤❡ ❝❧♦s❡r s✉rr♦✉♥❞✐♥❣ ♦❢ t❤❡ ❧✐st❡♥❡r✳

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 17

https://github.com/supercollider-quarks/AmbIEM
https://github.com/supercollider-quarks/AmbIEM

■♥ ✐♠♣❧❡♠❡♥t❛t✐♦♥s ♦❢ P❛r✐s✢â♥❡✉r ✉s✐♥❣ t❤❡
✈✐rt✉❛❧ ❆♠❜✐s♦♥✐❝s ❛♣♣r♦❛❝❤ ✭s❡❡ s❡❝t✐♦♥ ✸✳✷✳✶✮✱
t❤❡ r❛t✐♦ ♦❢ ❞✐r❡❝t ❛♥❞ r❡✈❡r❜ s✐❣♥❛❧ ❡♥❡r❣② ✐s
✜①❡❞ ❜② t❤❡ ✐♠♣✉❧s❡ r❡s♣♦♥s❡s✳ ■t ❝♦✉❧❞ ❜❡ ♠❛❞❡
✈❛r✐❛❜❧❡ ❜② ❛♥ ✐♠♣❧❡♠❡♥t❛t✐♦♥ ✉s✐♥❣ t✇♦ ❆♠✲
❜✐s♦♥✐❝s ❞♦♠❛✐♥s✱ ❛ ✏❞r②✑ ❛♥❞ ❛ ✏✇❡t✑ ♦♥❡✳

✸✳✷✳✸ ❈✐r❝✉❧❛r ♣❛♥♥✐♥❣

▼♦r❡ r❡❝❡♥t ✐♠♣❧❡♠❡♥t❛t✐♦♥s ♦❢ P❛r✐s✢â♥❡✉r
❞r♦♣ t❤❡ ✈✐rt✉❛❧ ❆♠❜✐s♦♥✐❝s ❛♣♣r♦❛❝❤ ❛s ♠♦st
♦❢ ✐ts ❛❞✈❛♥t❛❣❡s ❞♦ ♥♦t ❛♣♣❧② ❤❡r❡✳ ❉✐✛❡r❡♥t
t♦ t❤❡ t❤r❡❡✲❞✐♠❡♥s✐♦♥❛❧ ❆♠❜✐s♦♥✐❝s ❛♣♣r♦❛❝❤✱
t❤❡ r❡♥❞❡r✐♥❣ ✇❛s ❛❞❞✐t✐♦♥❛❧❧② r❡❞✉❝❡❞ t♦ t✇♦
❞✐♠❡♥s✐♦♥s✳ ▲✐st❡♥❡rs ✐♥ P❛r✐s✢â♥❡✉r ♠♦st❧②
♠♦✈❡ ✐♥ ❛ ♣❧❛♥❡ ♦♥❧②✱ ✇❤✐❧❡ t❤❡ t❤✐r❞ ❞✐♠❡♥✲
s✐♦♥ ❤❛s ♥♦ ♦r✐❡♥t✐♥❣ ❢✉♥❝t✐♦♥✳ ❚❤❡ s♦✉♥❞ s♣♦ts
❛r❡ ♠❡❛♥t t♦ ❜❡ ❛t ❡❛r ❧❡✈❡❧ ❛❧❧ t❤❡ t✐♠❡✱ ✐♥✲
❞❡♣❡♥❞❡♥t ♦❢ t❤❡ ❤❡✐❣❤t ♦❢ t❤❡ ❧✐st❡♥❡r✳ ❲❤❡♥
❛♣♣❧②✐♥❣ t❤❡ ✏s♦♥✐❝ ❤❛t✑ ♠❡t❛♣❤♦r ✭s❡❡ s❡❝t✐♦♥
✷✮✱ ❡❧❡✈❛t✐♦♥ ✐♥❢♦r♠❛t✐♦♥ ❝♦✉❧❞ ❤❛✈❡ ❛ ❝❡rt❛✐♥
✈❛❧✉❡✱ ❜✉t t❤✐s ✐♥t❡r❛❝t✐♦♥ s❝❤❡♠❡ ✇❛s ❛❧s♦ r❡✲
♣❧❛❝❡❞ ❜② ❛ ❞✐✛❡r❡♥t ♦♥❡ ✐♥ ❧❛t❡r ✈❡rs✐♦♥s ♦❢ t❤❡
✐♥st❛❧❧❛t✐♦♥ ✭s❡❡ ❬❘✉♠♦r✐✱ ✷✵✶✼❪✮✳
❈✉rr❡♥t❧②✱ P❛r✐s✢â♥❡✉r ✐♥❝♦r♣♦r❛t❡s t✇♦ ❞♦✲

♠❛✐♥s ♦❢ s✐♠♣❧❡ ❝✐r❝✉❧❛r ♣❛♥♥✐♥❣✱ ✐♠♣❧❡♠❡♥t❡❞
✉s✐♥❣ ❙✉♣❡r❝♦❧❧✐❞❡r✬s P❛♥❆③ ✉♥✐t ❣❡♥❡r❛t♦r✳ ❖♥❡
❞♦♠❛✐♥ ✉s❡s ✶✷ ❝❤❛♥♥❡❧s ♦❢ ❛ ♠❡❛s✉r❡❞ ❝✐r❝✉❧❛r
❧♦✉❞s♣❡❛❦❡r ❛rr❛② ✐♥ ❛ ❢❛✐r❧② r❡✈❡r❜❡r❛♥t r♦♦♠✱
✇❤✐❧❡ t❤❡ s❡❝♦♥❞ ♦♥❡ ❤❛s ✸✻ ♦✉t♣✉t ❝❤❛♥♥❡❧s r❡♣✲
r❡s❡♥t✐♥❣ ❛ t❡♥✲❞❡❣r❡❡ r❡s♦❧✉t✐♦♥ ♦❢ ❛♥❡❝❤♦✐❝ ✐♠✲
♣✉❧s❡ r❡s♣♦♥s❡s t❛❦❡♥ ❢r♦♠ t❤❡ ❙♦✉♥❞❙❝❛♣❡❘❡♥✲
❞❡r❡r ♣r♦❥❡❝t✻✳ ❙♦✉r❝❡s ✐♥ t❤❡ ❢❛r ✜❡❧❞ ❛r❡ ♣r♦✲
❥❡❝t❡❞ ✉s✐♥❣ t❤❡ ✜rst ♣❛♥♥✐♥❣ ❞♦♠❛✐♥ ✇❤✐❧❡ t❤❡
❡♥❡r❣② ❝♦♥tr✐❜✉t✐♦♥ ✐s ❣r❛❞✉❛❧❧② s❤✐❢t❡❞ t♦✇❛r❞s
t❤❡ s❡❝♦♥❞ ❞♦♠❛✐♥ ❢♦r ❝❧♦s❡r s♦✉r❝❡s✳ ❖❜✈✐♦✉s❧②✱
t❤❡ ❧❛tt❡r r❡♣r❡s❡♥ts ❛ str♦♥❣❡r ❞✐r❡❝t ♣♦rt✐♦♥ ♦❢
t❤❡ s♦✉r❝❡ s✐❣♥❛❧✳
❋♦r s♦✉r❝❡s ✈❡r② ❝❧♦s❡ t♦ t❤❡ ❧✐st❡♥❡r✬s ❤❡❛❞✱

t❤❡ ❜✐♥❛✉r❛❧ ❞♦♠❛✐♥ ✐♥ ❛ ❝❧❛ss✐❝ ✉♥❞❡rst❛♥❞✲
✐♥❣ ✐s ❧❡❢t✱ t❤❛t ✐s✱ ♥♦ ❤❡❛❞✲r❡❧❛t❡❞ ✐♠♣✉❧s❡ r❡✲
s♣♦♥s❡s ❛r❡ ✐♥✈♦❧✈❡❞ ❛♥②♠♦r❡✳ ■♥st❡❛❞✱ t❤❡ ✉s✉✲
❛❧❧② ✉♥❞❡s✐r❡❞ ❡✛❡❝ts ♦❢ ✐♥t❡♥s✐t② ♣❛♥♥✐♥❣ ♦♥
❤❡❛❞♣❤♦♥❡s ❛r❡ ❡①♣❧♦✐t❡❞ ❢♦r ♣r♦✈♦❦✐♥❣ ♥❡❛r✲
✜❡❧❞ ❛♥❞ ✐♥✲❤❡❛❞ ❡①♣❡r✐❡♥❝❡s ✭s❡❡ s❡❝t✐♦♥ ✸✳✸✳✸✮✳

✸✳✸ ❆♣♣❧✐❝❛t✐♦♥s ♦❢ ❜✐♥❛✉r❛❧ r❡❝♦r❞✐♥❣s

❲❤❛t ❞♦❡s ✐t ♠❡❛♥ t♦ r❡♣r❡s❡♥t ❛ s♣❛t✐❛❧✱ ❤❡❛❞✲
r❡❧❛t❡❞ ✜❡❧❞ r❡❝♦r❞✐♥❣ ❜② ❛ ♠♦♥❛✉r❛❧ s✐♥❣❧❡✲
♣♦✐♥t ♦❜❥❡❝t ✐♥ ❛ ✈✐rt✉❛❧ ❛✉❞✐t♦r② s❝❡♥❡❄ ❙✐♠✐✲
❧❛r t♦ s♦✉♥❞ st♦r❡❞ ♦♥ t❛♣❡✱ ❛ ✈✐♥②❧ r❡❝♦r❞ ♦r ❛
❝♦♠♣❛❝t ❞✐s❝✱ t❤❡ r❡❝♦r❞✐♥❣ ❜❡❝♦♠❡s ❛♥ ♦❜❥❡❝t
✐♥ t❡r♠s ♦❢ t❤❡ ❡♥✈✐r♦♥♠❡♥t✱ ❜❡ ✐t ❛ ♣❤②s✐❝❛❧ ❝❛r✲
r✐❡r ♠❡❞✐✉♠ ♦r ❛ s♦✉♥❞ s♦✉r❝❡ r❡♥❞❡r❡❞ ✐♥ ✈✐r✲

✻❤tt♣✿✴✴s♣❛t✐❛❧❛✉❞✐♦✳♥❡t✴ssr✴ ✭❧❛st r❡tr✐❡✈❡❞
❋❡❜r✉❛r② ✷✼✱ ✷✵✶✼✮

t✉❛❧ s♣❛❝❡✳ ❚❤✐s ✐s ❞✐✛❡r❡♥t ❢r♦♠ s✐♠♣❧② ♣❧❛②✐♥❣
✐t ❜❛❝❦✱ ✇❤✐❝❤ r❛r❡❧② ❢♦❝✉s❡s t❤❡ r❡❝♦r❞✐♥❣ ♠❡✲
❞✐❛ ✐ts❡❧❢✱ r❛t❤❡r✱ ✐ts ♣r♦♣❡rt✐❡s s❤❛❧❧ ❜❡ ❤✐❞❞❡♥
❜❡❤✐♥❞ t❤❡ r❡❝♦r❞❡❞✳ ■♥ P❛r✐s✢â♥❡✉r✱ t❤❡ r❡✲
❧❛t✐♦♥ ♦❢ t❤❡ r❡❝♦r❞✐♥❣ ✐♥ ✐ts ❤❡❛❞✲r❡❧❛t❡❞ ❢♦r♠
❛♥❞ ✐ts ❛♣♣❡❛r❛♥❝❡ ❛s ❛ ✈✐rt✉❛❧ ♦❜❥❡❝t ✐s ❛ ❝❡♥✲
tr❛❧ ♣♦✐♥t ♦❢ r❡✢❡❝t✐♦♥✱ ♣❧✉s t❤❡ ❛♥❡❝❞♦t❛❧✱ t❤❛t
✐s✱ ♠✉s✐❝❛❧ r❡❧❛t✐♦♥ ♦❢ s❡✈❡r❛❧ ♦❢ s✉❝❤ ♦❜❥❡❝ts t♦
❡❛❝❤ ♦t❤❡r ❜② ♣r♦✈✐❞✐♥❣ t❤❡♠ ❢♦r r❡❛rr❛♥❣❡♠❡♥t
❜② t❤❡ ❧✐st❡♥❡r✳

❲❤✐❧❡ t❤❡ r❡❝♦r❞✐♥❣s ❛r❡ ❧❡❢t ✇✐❞❡❧② ✉♥♣r♦✲
❝❡ss❡❞ ❢♦r t❤❡✐r ❜✐♥❛✉r❛❧ ♣r❡s❡♥t❛t✐♦♥ ✇❤❡♥ ❛
s♦✉♥❞ s✐t✉❛t✐♦♥ ✐s ✏❡♥t❡r❡❞✱✑ t❤❡✐r ♠♦♥❛✉r❛❧
❝♦✉♥t❡r♣❛rts ❛s ♦❜❥❡❝ts ✐♥ t❤❡ ✈✐rt✉❛❧ s❝❡♥❡ ❤❛✈❡
t♦ ❜❡ ❞❡r✐✈❡❞ ❢r♦♠ t❤❡ r❡❝♦r❞✐♥❣s ✇✐t❤ s♦♠❡
tr❡❛t♠❡♥t✳

✸✳✸✳✶ ▼♦♥❛✉r❛❧ r❡♣r❡s❡♥t❛t✐♦♥

❆♥ ✐♠♣♦rt❛♥t ♣♦✐♥t ✐s t♦ ❛❝❤✐❡✈❡ s♦♠❡ ❞❡❣r❡❡ ♦❢
♠♦♥❛✉r❛❧ ❝♦♠♣❛t✐❜✐❧✐t② ✐♥ ♦r❞❡r t♦ r❡❞✉❝❡ ❝♦♠❜
✜❧t❡r ❡✛❡❝ts ❡s♣❡❝✐❛❧❧② ✐♥ t❤❡ ❧♦✇❡r ❢r❡q✉❡♥❝✐❡s
✇❤❡♥ ♠✐①✐♥❣ ❜♦t❤ ❝❤❛♥♥❡❧s ♦❢ ❛ ❜✐♥❛✉r❛❧ r❡❝♦r❞✲
✐♥❣ t♦ ❛ s✐♥❣❧❡ ♦♥❡✳

❆ s✐♠♣❧❡ ♠♦♥❛✉r❛❧ r❡♣r❡s❡♥t❛t✐♦♥ ✇♦✉❧❞ ♦♥❧②
✉s❡ ♦♥❡ ❝❤❛♥♥❡❧ ♦❢ t❤❡ ❜✐♥❛✉r❛❧ r❡❝♦r❞✐♥❣✱ ❛♥❞ ✐♥
❢❛❝t t❤❛t ❤❛s ❜❡❡♥ ❞♦♥❡ ✐♥ ♣r❡❧✐♠✐♥❛r② ✈❡rs✐♦♥s
♦❢ P❛r✐s✢â♥❡✉r✳ ❖❢ ❝♦✉rs❡ t❤✐s r❡s✉❧ts ✐♥ ❛♥ ✉♥✲
❜❛❧❛♥❝❡❞ s♣❛t✐❛❧ ✐♥t❡r♣r❡t❛t✐♦♥ ♦❢ t❤❡ s✐❣♥❛❧✱ ❛s
t❤❡ ❤✐❣❤❡r ❢r❡q✉❡♥❝② ♣♦rt✐♦♥s ❛t t❤❡ ❢❛r s✐❞❡ t❤❛t
❛r❡ ❛tt❡♥✉❛t❡❞ ❜② t❤❡ ❤❡❛❞ ❛r❡ ♦♠✐tt❡❞✳ ◆❡✈✲
❡rt❤❡❧❡ss✱ ❢♦r ♣r♦✈✐❞✐♥❣ ❛♥ ♦✈❡r❛❧❧ ✐♠♣r❡ss✐♦♥ ♦❢
❛ ✜❡❧❞ r❡❝♦r❞✐♥❣ ❛♥❞ ✐ts r❡❝♦❣♥✐t✐♦♥ ✐♥ ❛ ✈✐rt✉❛❧
s❝❡♥❡ t❤✐s s♦❧✉t✐♦♥ ♠❛② s✉✣❝❡✳

❆ ♠♦r❡ ❛❞✈❛♥❝❡❞ ❛♣♣r♦❛❝❤ t♦ ♠♦♥❛✉r❛❧ ❝♦♠✲
♣❛t✐❜✐❧✐t② ✇♦✉❧❞ ❜❡ t♦ t✉r♥ t❤❡ ♣❤❛s❡ ❞✐✛❡r❡♥❝❡s
✐♥ t❤❡ ❧♦✇ ❢r❡q✉❡♥❝✐❡s ✐♥t♦ ❧❡✈❡❧ ❞✐✛❡r❡♥❝❡s✳ ❚❤✐s
✐s ❡①❛❝t❧② t❤❡ ♣✉r♣♦s❡ ♦❢ t❤❡ s♦ ❝❛❧❧❡❞ ❇❧✉♠✲
❧❡✐♥ ❙❤✉✤❡r ❬●❡r③♦♥✱ ✶✾✾✹❪✱ ✏t❤❡ ❣r❡❛t❡st ❢♦r✲
❣♦tt❡♥ ✐♥✈❡♥t✐♦♥ ✐♥ ❛✉❞✐♦ ❡♥❣✐♥❡❡r✐♥❣✑✼✳ ■t ✇❛s
♣❛t❡♥t❡❞ ❜② ❆❧❛♥ ❇❧✉♠❧❡✐♥ ✐♥ ✶✾✸✸ ❢♦r t❤❡ ❧♦✉❞✲
s♣❡❛❦❡r r❡♣r♦❞✉❝t✐♦♥ ♦❢ t✐♠❡✲♦❢✲❛rr✐✈❛❧ st❡r❡♦✲
♣❤♦♥✐❝ s✐❣♥❛❧s✳

■♥ P❛r✐s✢â♥❡✉r✱ t❤❡ ❇❧✉♠❧❡✐♥ ❙❤✉✤❡r ✐♠♣❧❡✲
♠❡♥t❛t✐♦♥ ❜❧s✶ ❜② ❋♦♥s ❆❞r✐❛❡♥s❡♥ ✐s ✉s❡❞✽✳ ■t
♣r♦✈✐❞❡s ♦♥❡ ♦❢ t❤❡ ❢❡✇ ❛❝❝❡ss✐❜❧❡ ✐♠♣❧❡♠❡♥t❛✲
t✐♦♥s✱ t❤❡ ♠♦st ❛❞✈❛♥❝❡❞ ♦♥❡ ❞✉❡ t♦ ✐ts ✉s❡ ♦❢
❝❛r❡❢✉❧❧② ❞❡s✐❣♥❡❞ ❋■❘ ✜❧t❡rs ❛♥❞✱ t♦ ♠② ❦♥♦✇❧✲
❡❞❣❡✱ t❤❡ ♦♥❧② ❢r❡❡ ❛♥❞ ❧✐❜r❡ ✐♠♣❧❡♠❡♥t❛t✐♦♥✳

✼❤tt♣✿✴✴✇✇✇✳♣s♣❛t✐❛❧❛✉❞✐♦✳❝♦♠✴❜❧✉♠❧❡✐♥❴❞❡❧t❛✳
❤t♠ ✭❧❛st r❡tr✐❡✈❡❞ ❋❡❜r✉❛r② ✷✼✱ ✷✵✶✼✮

✽❤tt♣✿✴✴❦♦❦❦✐♥✐③✐t❛✳❧✐♥✉①❛✉❞✐♦✳♦r❣✴
❧✐♥✉①❛✉❞✐♦✴③✐t❛✲❜❧s✶✲❞♦❝✴q✉✐❝❦❣✉✐❞❡✳❤t♠❧ ✭❧❛st
r❡tr✐❡✈❡❞ ❋❡❜r✉❛r② ✷✼✱ ✷✵✶✼✮

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 18

http://spatialaudio.net/ssr/
http://www.pspatialaudio.com/blumlein_delta.htm
http://www.pspatialaudio.com/blumlein_delta.htm
http://kokkinizita.linuxaudio.org/linuxaudio/zita-bls1-doc/quickguide.html
http://kokkinizita.linuxaudio.org/linuxaudio/zita-bls1-doc/quickguide.html

✸✳✸✳✷ ❋r❡q✉❡♥❝② r❡s♣♦♥s❡

❆ ✈✐rt✉❛❧ s♦✉r❝❡✬s s♣❡❝tr✉♠ ✐s ❧✐❦❡❧② t♦ ❜❡ ❞✐s✲
t♦rt❡❞ ❜② r❡♥❞❡r✐♥❣ ❝♦♠♣❛r❡❞ t♦ t❤❛t ♦❢ t❤❡ ✉♥✲
❞❡r❧②✐♥❣ ❜✐♥❛✉r❛❧ r❡❝♦r❞✐♥❣✳ ❆s ❜♦t❤ ✐♥st❛♥❝❡s
❛r❡ r❡❧❛t❡❞ t♦ ❡❛❝❤ ♦t❤❡r ✐♥ t❤❡ ✐♥st❛❧❧❛t✐♦♥✱ t❤❡
s✐❣♥❛❧s ✉s❡❞ ❛s ✈✐rt✉❛❧ s♦✉r❝❡s ❛r❡ ✜❧t❡r❡❞ ❛❝✲
❝♦r❞✐♥❣ t♦ ❡①♣❡r✐♠❡♥t❛❧ ❡①♣❧♦r❛t✐♦♥ ♦❢ ❞✐✛❡r❡♥t
s♣❛t✐❛❧ ❝♦♥st❡❧❧❛t✐♦♥s✱ t❤❛t ✐s✱ ❞✐✛❡r❡♥t r❡♥❞❡r❡❞
❞✐r❡❝t✐♦♥s ❛♥❞ ❞✐st❛♥❝❡s ❢r♦♠ t❤❡ ❧✐st❡♥❡r✳

✸✳✸✳✸ ❚r❛♥s✐t✐♦♥ ❞❡s✐❣♥

❚❤❡ ♠♦♠❡♥t ♦❢ tr❛♥s✐t✐♦♥ ❢r♦♠ t❤❡ ✈✐rt✉❛❧ s❝❡♥❡
t♦ t❤❡ ❜✐♥❛✉r❛❧ r❡❝♦r❞✐♥❣ ❛♥❞ ❜❛❝❦ ✐s ♦♥❡ ♦❢ t❤❡
❝❡♥tr❛❧ ❛❡st❤❡t✐❝ ❡①♣❡r✐❡♥❝❡s ✐♥ P❛r✐s✢â♥❡✉r✱
❤❡♥❝❡ t❤❡ ✐♠♣♦rt❛♥❝❡ ♦❢ ✐ts ❞❡s✐❣♥✳ ■♥ t❤❡ ❝♦✉rs❡
♦❢ r❡✜♥✐♥❣ t❤❡ ✇♦r❦✱ tr❛♥s✐t✐♦♥ ❞❡s✐❣♥ ❡✈♦❧✈❡❞
❢r♦♠ ❛ s✐♠♣❧❡ ❝r♦ss✲❢❛❞❡ ❜❡t✇❡❡♥ t❤❡ t✇♦ ❞♦✲
♠❛✐♥s✱ ♥❡✈❡rt❤❡❧❡ss ✉s✐♥❣ s♣❡❝✐❛❧ ♦✈❡r❧❛♣♣✐♥❣
❝✉r✈❡s✱ t♦✇❛r❞s ❛ ♠♦r❡ ❝♦♠♣❧❡① ♠✉❧t✐✲st❛❣❡ ♣r♦✲
❝❡ss✳
■♥ t❤❡ ♣❤❡♥♦♠❡♥♦❧♦❣✐❝❛❧ ❞❡s❝r✐♣t✐♦♥ ✭s❡❡ s❡❝✲

t✐♦♥ ✷✮ ■ st❛t❡❞ t❤❛t ✐♥✲❤❡❛❞ ❧♦❝❛❧✐s❛t✐♦♥ ✐♥ t❤❡
✈✐rt✉❛❧ s❝❡♥❡ ✐s ❞❡s✐r❡❞ ✐♥ ♦r❞❡r t♦ ✐♥❞✐❝❛t❡ t❤❡
❡①❛❝t ♣♦s✐t✐♦♥ ♦❢ ❛ s♦✉♥❞ s♣♦t✳ ❊❛r❧② ✐♠♣❧❡✲
♠❡♥t❛t✐♦♥s ♦❢ P❛r✐s✢â♥❡✉r ✉s❡❞ t❤❡ ✈✐rt✉❛❧ ❆♠✲
❜✐s♦♥✐❝s ❛♣♣r♦❛❝❤ ❢♦r t❤❡ ❜✐♥❛✉r❛❧ r❡♥❞❡r✐♥❣ ♦❢
t❤❡ s❝❡♥❡ ✭s❡❡ s❡❝t✐♦♥ ✸✳✷✳✶✮✳ ❋♦r ❝❧♦s❡r s♦✉r❝❡s✱
t❤❡ ❡♥❡r❣② ❝♦♥tr✐❜✉t✐♦♥ ♦❢ ❤✐❣❤❡r ❆♠❜✐s♦♥✐❝s ♦r✲
❞❡rs ✐s ❣r❛❞✉❛❧❧② r❡❞✉❝❡❞ ❛❢t❡r ❡♥❝♦❞✐♥❣✱ ✇❤✐❝❤
❛❝❤✐❡✈❡s ❛ s♣❛t✐❛❧ ✇✐❞❡♥✐♥❣ ✉♥t✐❧ ♦♥❧② t❤❡ ③❡r♦t❤
♦r❞❡r r❡♠❛✐♥s ✇❤❡♥ t❤❡ ♣♦s✐t✐♦♥ ♦❢ t❤❡ s♦✉r❝❡
✐s r❡❛❝❤❡❞✳ ❚❤✐s ❝♦rr❡s♣♦♥❞s t♦ ❛♥ ♦♠♥✐❞✐r❡❝✲
t✐♦♥❛❧ r❡❝❡✐✈❡r ♣❛tt❡r♥ ❛t t❤❡ ❧✐st❡♥❡r✬s ♣♦s✐t✐♦♥✱
❤❡♥❝❡ t❤❡ s♦✉r❝❡✬s s✐❣♥❛❧ ✐s ♣r♦❥❡❝t❡❞ ❡q✉❛❧❧②
❢r♦♠ ❛❧❧ ❞✐r❡❝t✐♦♥s ✐♥ t❤❡ ✈✐rt✉❛❧ ❆♠❜✐s♦♥✐❝s
s♣❡❛❦❡r s❡t✉♣✳ ■♥ ❛ ❝❡rt❛✐♥ ✉♥❞❡rst❛♥❞✐♥❣✱ t❤✐s
♠✐❣❤t r❡♣r❡s❡♥t t❤❡ ♥♦t✐♦♥ ♦❢ ❜❡✐♥❣ ✏✐♥s✐❞❡✑ ❛
s♦✉♥❞ s♦✉r❝❡✱ ❡s♣❡❝✐❛❧❧② ✐♥ t❤❡ ❝❛s❡ ♦❢ r❡❛❧ ❧♦✉❞✲
s♣❡❛❦❡r r❡♣r♦❞✉❝t✐♦♥ ❛♥❞ ✇❤❡♥ t❤❡ s♦✉r❝❡ ✐s ❛t✲
tr✐❜✉t❡❞ ❛ ❝❡rt❛✐♥ ❡①t❡♥s✐♦♥✱ ❢♦r ✐♥st❛♥❝❡✱ t❤❛t
♦❢ t❤❡ r❡♣r♦❞✉❝t✐♦♥ s♣❛❝❡✳
❋♦r t❤❡ ❜✐♥❛✉r❛❧ ♣r♦❥❡❝t✐♦♥ ♦❢ P❛r✐s✢â♥❡✉r

❛♥❞ ✐ts ♥❛rr❛t✐✈❡✱ ❛♥♦t❤❡r ❛♣♣r♦❛❝❤ t♦ ❝♦♥✈❡②✲
✐♥❣ t❤❡ ✏✐♥s✐❞❡✑ ♥♦t✐♦♥ ❛♣♣❡❛rs t♦ ❜❡ ♠✉❝❤ ♠♦r❡
❛♣♣r♦♣r✐❛t❡✿ t❤❡ ♦❢t❡♥ ✉♥❞❡s✐r❡❞ ✐♥✲❤❡❛❞ ❧♦✲
❝❛❧✐s❛t✐♦♥ ♦❢ ❧♦✉❞s♣❡❛❦❡r✲❜❛s❡❞ st❡r❡♦♣❤♦♥② ♦r
♠♦♥❛✉r❛❧ s✐❣♥❛❧s ♣r❡s❡♥t❡❞ ♦♥ ❤❡❛❞♣❤♦♥❡s✳ ■ts
❛♣♣❧✐❝❛t✐♦♥ ♠❡❛♥s ❧❡❛✈✐♥❣ t❤❡ ✐♥t❡❣r✐t② ♦❢ ❜♦t❤
❜✐♥❛✉r❛❧ ♣❧❛②❜❛❝❦ ❛♥❞ ❜✐♥❛✉r❛❧ r❡♥❞❡r✐♥❣ ✐♥
❛ str✐❝t s❡♥s❡ ♦❢ ❝♦♠♠✉♥✐❝❛t✐♦♥s ❡♥❣✐♥❡❡r✐♥❣✳
❘❛t❤❡r✱ s✐❣♥❛❧s ✉s✉❛❧❧② ♥♦t ❝♦♥s✐❞❡r❡❞ ❜✐♥❛✉✲
r❛❧ ❛r❡ ✐♥t❡r♣r❡t❡❞ ❛s ❡❛r s✐❣♥❛❧s ✐♥ ♦r❞❡r t♦ ❡①✲
♣❧♦✐t t❤❡ r❡s✉❧t✐♥❣✱ ②❡t ✉♥✐q✉❡❧② ❜✐♥❛✉r❛❧ ❡✛❡❝t✳
❋♦r t❤✐s r❡❛s♦♥✱ ■ ❞♦ ♥♦t ❛ttr✐❜✉t❡ t❤❡ q✉❛❧✐t②
✏❜✐♥❛✉r❛❧✑ t♦ ❛ s✐❣♥❛❧ ♣❛✐r ❜❡❝❛✉s❡ ♦❢ ✐ts t❡❝❤♥✐✲

❝❛❧ ♣r♦♣❡rt✐❡s s✉❝❤ ❛s t❤❡ ♣r❡s❡♥❝❡ ♦❢ ✐♥t❡r❛✉r❛❧
t✐♠❡ ♦r ❧❡✈❡❧ ❞✐✛❡r❡♥❝❡s ❜✉t r❛t❤❡r ❞✉❡ t♦ ✐ts
✐♥t❡♥t✐♦♥❛❧ ✐♥t❡r♣r❡t❛t✐♦♥ ❛s ❡❛r s✐❣♥❛❧s✳ ❋✉r✲
t❤❡r♠♦r❡✱ t❤✐s ❡①❛♠♣❧❡ ✐s ❛ str♦♥❣ ✐♥❞✐❝❛t✐♦♥
✇❤② ♦♣❡♥ s♦❢t✇❛r❡ s②st❡♠s ❛r❡ ❛ ♣r❡❝♦♥❞✐t✐♦♥
❢♦r ♣✉rs✉✐♥❣ t❤❡ ❛rt✐st✐❝❛❧❧② ♠♦t✐✈❛t❡❞ ❛♣♣r♦❛❝❤
t♦ ❜✐♥❛✉r❛❧ t❡❝❤♥♦❧♦❣② ❛s ❞❡s❝r✐❜❡❞ ❤❡r❡✳ ▼♦st
♠♦♥♦❧✐t❤✐❝ ✐♠♣❧❡♠❡♥t❛t✐♦♥s✱ ❡✈❡♥ ✐❢ ❛❞✈❛♥❝❡❞
❛♥❞ ♦♣t✐♠✐s❡❞ ✇✐t❤ r❡s♣❡❝t t♦ ❧❛t❡st r❡s❡❛r❝❤✱ ❞♦
♥♦t ❛❧❧♦✇ ❢♦r ♠♦❞❡❧❧✐♥❣ ❛♥❞ ❛❝❝❡ss✐♥❣ t❤❡ s✐❣♥❛❧
♣❛t❤ ❛t ❡✈❡r② ❧❡✈❡❧✳
❲❤❡♥ ❡①♣❡r✐♠❡♥t✐♥❣ ✇✐t❤ t❤❡ ❛❜♦✈❡✲

♠❡♥t✐♦♥❡❞ ❇❧✉♠❧❡✐♥ ❙❤✉✤❡r ✭s❡❡ s❡❝t✐♦♥ ✸✳✸✳✶✮✱
■ ♥♦t✐❝❡❞ t❤❛t ✐ts ♦✉t♣✉t ♣r♦✈✐❞❡s ❛ ♣❡r❝❡♣t✉❛❧
❜r✐❞❣❡ ❜❡t✇❡❡♥ ♠♦♥❛✉r❛❧ ✐♥✲❤❡❛❞ ❧♦❝❛❧✐s❛t✐♦♥
❛♥❞ ❜✐♥❛✉r❛❧ ❡①t❡r♥❛❧✐s❛t✐♦♥✳ ❙♦♠❡ ❢❡❛t✉r❡s ❛r❡
r❡t❛✐♥❡❞ ❢r♦♠ t❤❡ ♦r✐❣✐♥❛t✐♥❣ ❜✐♥❛✉r❛❧ s✐❣♥❛❧
❛❧❧♦✇✐♥❣ ❢♦r ❛ ♣❛rt✐❛❧ ❡①t❡r♥❛❧✐s❛t✐♦♥✱ ✇❤✐❧❡
♦t❤❡rs✱ ❞✉❡ t♦ t❤❡✐r ♠♦♥❛✉r❛❧ ❝♦♠♣❛t✐❜✐❧✐t②✱
❡♥❛❜❧❡ ♣❛♥♣♦t✲❧✐❦❡ ♣r♦❝❡ss✐♥❣ ❢♦r ❛❝❤✐❡✈✐♥❣ ❛
✈❛r✐❛❜❧❡ ✐♥✲❤❡❛❞ st❡r❡♦ ✇✐❞t❤✳ ■♥ ❧❛t❡r ✐♠♣❧❡✲
♠❡♥t❛t✐♦♥s ♦❢ P❛r✐s✢â♥❡✉r✱ s✉❝❤ ❛ ❇❧✉♠❧❡✐♥
s❤✉✤❡❞ st❡r❡♦ s✐❣♥❛❧ ✐s ✉s❡❞ ❛s ❛♥ ✐♥t❡r♠❡❞✐❛t❡
tr❛♥s✐t✐♦♥ ♣❤❛s❡ ❢♦r ❣r❛❞✉❛❧❧② ♦♣❡♥✐♥❣ t❤❡
♠♦♥❛✉r❛❧ ✐♥✲❤❡❛❞ s♣♦t✱ ✉♥t✐❧ t❤❡ ❧✐st❡♥❡r✬s ❤❡❛❞
✐s ✏❧❡❢t✑ ❜② ❢❛❞✐♥❣ ✐♥t♦ t❤❡ ✐♠♠❡rs✐✈❡ ❜✐♥❛✉r❛❧
r❡❝♦r❞✐♥❣✳

✹ ❈♦♥❝❧✉s✐♦♥

■♥ t❤✐s ♣❛♣❡r✱ ■ ♣r❡s❡♥t❡❞ ❛♥ ✐♥t❡r♠❡❞✐❛ ✐♥st❛❧✲
❧❛t✐♦♥ ♦❢ ♠✐♥❡ ❝❛❧❧❡❞ P❛r✐s✢â♥❡✉r✳ ■t t❛❦❡s ♣❧❛❝❡
✐♥ ❛✉❞✐t♦r② s♣❛❝❡ ✇❤✐❝❤ ✐s ♣r❡s❡♥t❡❞ ❜✐♥❛✉r❛❧❧②
✈✐❛ ❤❡❛❞♣❤♦♥❡s✳ ❚❤❡ ✇♦r❦ ✐♥❝♦r♣♦r❛t❡s s❡✈❡♥
✉r❜❛♥ ❛♥❞ r✉r❛❧ s♦✉♥❞ s✐t✉❛t✐♦♥s ❛rr❛♥❣❡❞ ✐♥ ❛
✈✐rt✉❛❧ s❝❡♥❡ t❤❛t ✐s ♥❛✈✐❣❛❜❧❡ ❜② ❜♦❞✐❧② ♠♦t✐♦♥
❛♥❞ ♦r✐❡♥t❛t✐♦♥ ❜② ❧✐st❡♥✐♥❣✳ ❯♣♦♥ ✐♥t❡r❛❝t✐♦♥✱
❡❛❝❤ ♦❢ t❤❡ s♦✉♥❞ s✐t✉❛t✐♦♥s ❝❛♥ ❜❡ ❡♥t❡r❡❞✱ t❤❛t
✐s✱ t❤❡ ✈✐rt✉❛❧ s❝❡♥❡ ❝❛♥ ❜❡ ❧❡❢t ✐♥ ❢❛✈♦✉r ♦❢ t❤❡
♦r✐❣✐♥❛❧ st❛t✐❝✱ ❜✐♥❛✉r❛❧ r❡❝♦r❞✐♥❣ ♦❢ t❤❛t s✐t✉❛✲
t✐♦♥✳ ❙✉❜s❡q✉❡♥t ♠♦✈❡♠❡♥ts ❞♦ ♥♦t ❛❧❧♦✇ ❢♦r ❛
❢✉rt❤❡r ♥❛✈✐❣❛t✐♦♥ ✇✐t❤✐♥ t❤❡ s✐t✉❛t✐♦♥✱ ✐♥st❡❛❞✱
t❤❡ ✈✐rt✉❛❧ s❝❡♥❡ ✇✐❧❧ ❜❡ r❡❛rr❛♥❣❡❞✱ ✇❤✐❝❤ ❜❡✲
❝♦♠❡s ❛✉❞✐❜❧❡ ♦♥❧② ❛❢t❡r ❤❛✈✐♥❣ ❧❡❢t ❛❣❛✐♥ t❤❡
st❛t✐❝ r❡❝♦r❞✐♥❣✳
■ ❞❡s❝r✐❜❡❞ ✐♥ ❞❡t❛✐❧ t❤❡ ✈✐s✐t♦r✬s ❡①♣❡r✐❡♥❝❡ ♦❢

t❤❡ ✐♥st❛❧❧❛t✐♦♥ ❛♥❞ r❡❛❧✐s❛t✐♦♥ ❛❧t❡r♥❛t✐✈❡s ✉s✲
✐♥❣ ❋▲❖❙❙ t♦♦❧s✳ ❇② ❞♦✐♥❣ s♦✱ ■ tr✐❡❞ t♦ r❡❧❛t❡
t❡❝❤♥✐❝❛❧ ✐♠♣❧❡♠❡♥t❛t✐♦♥ ❞❡t❛✐❧s t♦ ❜♦t❤ ❝♦♠✲
♠♦♥ ❛♣♣r♦❛❝❤❡s ❛s s✉❣❣❡st❡❞ ❜② s❝❤♦❧❛r❧② r❡✲
s❡❛r❝❤ ❛♥❞ t♦ ❛❧t❡r♥❛t✐✈❡ ✜♥❞✐♥❣s ❞r✐✈❡♥ ❜② ❛❡s✲
t❤❡t✐❝ r❡✢❡❝t✐♦♥ ❛♥❞ ❛rt✐st✐❝ ❡①♣❡r✐♠❡♥t❛t✐♦♥✳
❖♥❡ ♦❢ ♠② ❝❡♥tr❛❧ ❛r❣✉♠❡♥ts ✐s t❤❛t t❤❡ ❞❡s✐❣♥
♦❢ ✈✐rt✉❛❧ ❛✉❞✐♦ ❡♥✈✐r♦♥♠❡♥ts ❛❧✇❛②s ❤❛s t♦ r❡❢✲
❡r❡♥❝❡ t❤❡ ❛❡st❤❡t✐❝ ❡①♣❡r✐❡♥❝❡ ❛♥❞ t❤❡ ❝♦♥❞✐✲

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 19

t✐♦♥s ♦❢ t❤❡✐r r❡❝❡♣t✐♦♥ r❛t❤❡r t❤❛♥ ❡①♣❧✐❝✐t ♦r
✐♠♣❧✐❝✐t r❡❛❧✲✇♦r❧❞ s✐t✉❛t✐♦♥s✳ ❚❤❡ ♣r❡s❡♥t❛t✐♦♥
♦❢ s♣❛❝❡s ❜② tr❛♥s❢♦r♠✐♥❣ ♠❡❞✐❛ s✉❝❤ ❛s ❜✐♥❛✉✲
r❛❧ ❛✉❞✐♦ t❡❝❤♥♦❧♦❣② ✐s ♥♦t ❛ r❡❛❧✲✇♦r❧❞ ❡①♣❡r✐✲
❡♥❝❡ ✐♥ t❤❡ s❡♥s❡ ♦❢ s♦✉♥❞ ♣r♦♣❛❣❛t✐♦♥ ❞✐r❡❝t❧②
❛♥❞ s♦❧❡❧② t❤r♦✉❣❤ ❛✐r✳
■ ❛✐♠❡❞ ❛t ♣♦✐♥t✐♥❣ ♦✉t t❤❛t ❋▲❖❙❙ t♦♦❧s ❛r❡

❛ ♣r❡❝♦♥❞✐t✐♦♥ ❢♦r ❛rt✐st✐❝ ❡♥❣✐♥❡❡r✐♥❣ ❛s ♣❡r✲
❢♦r♠❡❞ ✐♥ t❤❡ ♣r❡s❡♥t❡❞ ♣r♦❥❡❝t✳ ❆s ❛♥② ❣✐✈❡♥
❛♣♣r♦❛❝❤ ♦r ♣r♦❝❡ss ✐s s✉❜❥❡❝t t♦ ❝r✐t✐❝❛❧ r❡✢❡❝✲
t✐♦♥ ❛♥❞ ♣♦t❡♥t✐❛❧ ♠♦❞✐✜❝❛t✐♦♥✱ t❤❡ ✐♠♣❧❡♠❡♥✲
t❛t✐♦♥s ✐♥✈♦❧✈❡❞ ❤❛✈❡ t♦ ❜❡ ❛❝❝❡ss✐❜❧❡ ❛♥②✇❤❡r❡
✐♥ t❤❡ s✐❣♥❛❧ ♣❛t❤ ❛♥❞ ❛t ❛♥② ❧❡✈❡❧ t❤❛t t✉r♥s
♦✉t t♦ ❜❡ ❛♣♣r♦♣r✐❛t❡✳ ◆❡✐t❤❡r ✇♦✉❧❞ ✐t ❜❡ ♣♦s✲
s✐❜❧❡ ❢♦r ♠❡ ✭❛♥❞ ♣r♦❜❛❜❧② ❢♦r ❛♥② ❛rt✐st✮ t♦ ✐♠✲
♣❧❡♠❡♥t ❛❧❧ t❤❡ ❜✉✐❧❞✐♥❣ ❜❧♦❝❦s ♠②s❡❧❢ t❤❛t r❡✲
q✉✐r❡ ❛ ❞❡❡♣ ❛❝❝❡ss t♦ t❤❡✐r ✐♥♥❡r ♠❡❝❤❛♥✐s♠s✱
♥♦r ✇♦✉❧❞ ♠♦♥♦❧✐t❤✐❝ ❛♥❞ ❝❧♦s❡❞ s♦❢t✇❛r❡ ❛❧❧♦✇
❢♦r ❡♥t❛♥❣❧✐♥❣ ❛rt✐st✐❝ q✉❡st✱ ❛❡st❤❡t✐❝ r❡✢❡❝t✐♦♥
❛♥❞ ❡♥❣✐♥❡❡r✐♥❣ ❛♠❜✐t✐♦♥ ❛s ❛tt❡♠♣t❡❞ t♦ ❡①✲
❡♠♣❧✐❢② ✐♥ t❤✐s ♣❛♣❡r✳

✺ ❆❝❦♥♦✇❧❡❞❣❡♠❡♥ts

P❛r✐s✢â♥❡✉r ✇❛s ✐♥✐t❛❧❧② ❝♦♥❝❡✐✈❡❞ ✐♥ ✷✵✵✽ ❞✉r✲
✐♥❣ t✇♦ s❤♦rt✲t❡r♠ s❝✐❡♥t✐✜❝ ♠✐ss✐♦♥s ❛t ■♥st✐✲
t✉t❡ ♦❢ ❊❧❡❝tr♦♥✐❝ ▼✉s✐❝ ❛♥❞ ❆❝♦✉st✐❝s ●r❛③
✭■❊▼✮✱ ❢✉♥❞❡❞ ❜② t❤❡ ❙♦♥✐❝ ■♥t❡r❛❝t✐♦♥ ❉❡s✐❣♥
❊✉r♦♣❡❛♥ ❈❖❙❚ ❛❝t✐♦♥ ✭❈❖❙❚ ■❈✵✻✵✶✱ ❬❘♦❝✲
❝❤❡ss♦✱ ✷✵✶✶❪✮✳ ❚❤❡ ✐♥st❛❧❧❛t✐♦♥ ❤❛s ❜❡❡♥ ❢✉r✲
t❤❡r ❞❡✈❡❧♦♣❡❞ ✇✐t❤✐♥ t❤❡ ❑❧❛♥❣rä✉♠❡ r❡s❡❛r❝❤
♣r♦❥❡❝t ✭✷✵✶✸✕✷✵✶✺✮✱ s✉♣♣♦rt❡❞ ❜② ❩✉❦✉♥❢ts✲
❢♦♥❞s ❙t❡✐❡r♠❛r❦ ✭❢✉♥❞s ❢♦r t❤❡ ❢✉t✉r❡ ❞❡✈❡❧♦♣✲
♠❡♥t ♦❢ t❤❡ r❡❣✐♦♥ ♦❢ ❙t②r✐❛✱ ❆✉str✐❛✮ ❛s ♣❛rt
♦❢ t❤❡ ♣r♦❣r❛♠♠❡ ❊①❝✐t✐♥❣ ❙❝✐❡♥❝❡ ❛♥❞ ❙♦❝✐❛❧
■♥♥♦✈❛t✐♦♥s✳

❘❡❢❡r❡♥❝❡s

❋♦♥s ❆❞r✐❛❡♥s❡♥✳ ✷✵✵✻❛✳ ❆❝♦✉st✐❝❛❧ ✐♠♣✉❧s❡
r❡s♣♦♥s❡ ♠❡❛s✉r❡♠❡♥t ✇✐t❤ ❆▲■❑■✳ ■♥ Pr♦✲
❝❡❡❞✐♥❣s ♦❢ ▲✐♥✉① ❆✉❞✐♦ ❈♦♥❢❡r❡♥❝❡✱ ♣❛❣❡s ✾✕
✶✹✳ ❩❑▼✳

❋♦♥s ❆❞r✐❛❡♥s❡♥✳ ✷✵✵✻❜✳ ❉❡s✐❣♥ ♦❢ ❛ ❝♦♥✈♦❧✉✲
t✐♦♥ ❡♥❣✐♥❡ ♦♣t✐♠✐s❡❞ ❢♦r r❡✈❡r❜✳ ■♥ Pr♦❝❡❡❞✲
✐♥❣s ♦❢ ▲✐♥✉① ❆✉❞✐♦ ❈♦♥❢❡r❡♥❝❡✱ ♣❛❣❡s ✹✾✕✺✸✳
❩❑▼✳

❏❡♥s ❇❧❛✉❡rt✳ ✶✾✾✼✳ ❙♣❛t✐❛❧ ❍❡❛r✐♥❣✳ ▼■❚
Pr❡ss✳

❏érô♠❡ ❉❛♥✐❡❧✳ ✷✵✵✸✳ ❙♣❛t✐❛❧ s♦✉♥❞ ❡♥❝♦❞✲
✐♥❣ ✐♥❝❧✉❞✐♥❣ ♥❡❛r ✜❡❧❞ ❡✛❡❝t✿ ■♥tr♦❞✉❝✐♥❣
❞✐st❛♥❝❡ ❝♦❞✐♥❣ ✜❧t❡r ❛♥❞ ❛ ✈✐❛❜❧❡✱ ♥❡✇ ❛♠✲
❜✐s♦♥✐❝ ❢♦r♠❛t✳ ■♥ Pr♦❝❡❡❞✐♥❣s ♦❢ ✷✸r❞ ❆❊❙
■♥t❡r♥❛t✐♦♥❛❧ ❈♦♥❢❡r❡♥❝❡✳

▼✐❝❤❛❡❧ ●❡r③♦♥✳ ✶✾✾✹✳ ❆♣♣❧✐❝❛t✐♦♥s ♦❢ ❜❧✉♠✲
❧❡✐♥ s❤✉✤✐♥❣ t♦ st❡r❡♦ ♠✐❝r♦♣❤♦♥❡ t❡❝❤♥✐q✉❡s✳
❏♦✉r♥❛❧ ♦❢ t❤❡ ❆✉❞✐♦ ❊♥❣✐♥❡❡r✐♥❣ ❙♦❝✐❡t②✱
✹✷✭✻✮✿✹✸✺✕✹✺✸✳

❋❧♦r✐❛♥ ❍♦❧❧❡r✇❡❣❡r ❛♥❞ ▼❛rt✐♥ ❘✉♠♦r✐✳
✷✵✶✸✳ Pr♦❞✉❝t✐♦♥ ❛♥❞ ❛♣♣❧✐❝❛t✐♦♥ ♦❢ r♦♦♠ ✐♠✲
♣✉❧s❡ r❡s♣♦♥s❡s ❢♦r ♠✉❧t✐❝❤❛♥♥❡❧ s❡t✉♣s ✉s✐♥❣
❋▲❖❙❙ t♦♦❧s✳ ■♥ Pr♦❝❡❡❞✐♥❣s ♦❢ ▲✐♥✉① ❆✉❞✐♦
❈♦♥❢❡r❡♥❝❡✱ ♣❛❣❡s ✶✷✺✕✶✸✷✳ ■❊▼✳

❚❤♦r ▼❛❣♥✉ss♦♥✳ ✷✵✵✽✳ ❊①♣r❡ss✐♦♥ ❛♥❞
t✐♠❡✿ ❚❤❡ q✉❡st✐♦♥ ♦❢ str❛t❛ ❛♥❞ t✐♠❡ ♠❛♥✲
❛❣❡♠❡♥t ✐♥ ❝r❡❛t✐✈❡ ♣r❛❝t✐❝❡s ✉s✐♥❣ t❡❝❤✲
♥♦❧♦❣②✳ ■♥ ❆②♠❡r✐❝ ▼❛♥s♦✉① ❛♥❞ ▼❛r❧♦❡s
❞❡ ❱❛❧❦✱ ❡❞✐t♦rs✱ ❋▲❖❙❙ ✰ ❆rt✱ ♣❛❣❡s ✷✸✷✕
✷✹✼✳ ●❖❚❖✶✵✴❖♣❡♥▼✉t❡✳

▲❡✈ ▼❛♥♦✈✐❝❤✳ ✷✵✶✸✳ ❙♦❢t✇❛r❡ ❚❛❦❡s ❈♦♠✲
♠❛♥❞✳ ◆✉♠❜❡r ✺ ✐♥ ■♥t❡r♥❛t✐♦♥❛❧ ❚❡①ts ✐♥
❈r✐t✐❝❛❧ ▼❡❞✐❛ ❆❡st❤❡t✐❝s✳ ❇❧♦♦♠s❜✉r②✳

▼❛r❦✉s ◆♦✐st❡r♥✐❣✱ ❚❤♦♠❛s ▼✉s✐❧✱ ❆❧♦✐s ❙♦♥✲
t❛❝❝❤✐✱ ❛♥❞ ❘♦❜❡rt ❍ö❧❞r✐❝❤✳ ✷✵✵✸✳ ✸❉ ❜✐♥✲
❛✉r❛❧ s♦✉♥❞ r❡♣r♦❞✉❝t✐♦♥ ✉s✐♥❣ ❛ ✈✐rt✉❛❧ ❆♠✲
❜✐s♦♥✐❝ ❛♣♣r♦❛❝❤✳ ■♥ ■❊❊❊ ■♥t❡r♥❛t✐♦♥❛❧ ❙②♠✲
♣♦s✐✉♠ ♦♥ ❱✐rt✉❛❧ ❊♥✈✐r♦♥♠❡♥ts✱ ♣❛❣❡s ✶✼✹✕
✶✼✽✳

❘✉✐ P❡♥❤❛✳ ✷✵✵✽✳ ❉✐st❛♥❝❡ ❡♥❝♦❞✐♥❣ ✐♥ ❆♠✲
❜✐s♦♥✐❝s ✉s✐♥❣ t❤r❡❡ ❛♥❣✉❧❛r ❝♦♦r❞✐♥❛t❡s✳ ■♥
Pr♦❝❡❡❞✐♥❣s ♦❢ ❙♦✉♥❞ ❛♥❞ ▼✉s✐❝ ❈♦♠♣✉t✐♥❣
❈♦♥❢❡r❡♥❝❡✳

❉❛✈✐❞❡ ❘♦❝❝❤❡ss♦✳ ✷✵✶✶✳ ❊①♣❧♦r❛t✐♦♥s ✐♥
❙♦♥✐❝ ■♥t❡r❛❝t✐♦♥ ❉❡s✐❣♥✳ ▲♦❣♦s✳

▼❛rt✐♥ ❘✉♠♦r✐✱ ❋❧♦r✐❛♥ ❍♦❧❧❡r✇❡❣❡r✱ ❛♥❞ ❆♥✲
❞rés ❈❛❜r❡r❛✳ ✷✵✶✵✳ ❇✐♥❛✉r❛❧ r♦♦♠ ✐♠♣✉❧s❡
r❡s♣♦♥s❡s ❢♦r ❝♦♠♣♦s✐t✐♦♥✱ ❞♦❝✉♠❡♥t❛t✐♦♥✱
✈✐rt✉❛❧ ❛❝♦✉st✐❝s ❛♥❞ ❛✉❞✐♦ ❛✉❣♠❡♥t❡❞ ❡♥✈✐✲
r♦♥♠❡♥ts✳ ■♥ Pr♦❝❡❡❞✐♥❣s ♦❢ ✷✻t❤ ❱❉❚ ■♥t❡r✲
♥❛t✐♦♥❛❧ ❈♦♥✈❡♥t✐♦♥✱ ♣❛❣❡s ✻✼✵✕✻✼✾✳ ❱❉❚✳

▼❛rt✐♥ ❘✉♠♦r✐✳ ✷✵✶✻✳ ❑♦♥str✉✐❡rt❡ ❘ä✉♠❡ ✕
äst❤❡t✐s❝❤❡ ■♠♣❧✐❦❛t✐♦♥❡♥ ✈♦♥ ❱❡r❢❛❤r❡♥ ✉♥❞
❲❡r❦③❡✉❣❡♥ ❞❡r ❇✐♥❛✉r❛❧t❡❝❤♥✐❦✳ ■♥ Pr♦❝❡❡❞✲
✐♥❣s ♦❢ ✷✾t❤ ❱❉❚ ■♥t❡r♥❛t✐♦♥❛❧ ❈♦♥✈❡♥t✐♦♥✱
♣❛❣❡s ✷✶✵✕✷✶✻✳ ❱❉❚✳ ❬❣❡r♠❛♥❪✳

▼❛rt✐♥ ❘✉♠♦r✐✳ ✷✵✶✼✳ ❙♣❛❝❡ ❛♥❞ ❜♦❞② ✐♥
s♦✉♥❞ ❛rt✿ ❆rt✐st✐❝ ❡①♣❧♦r❛t✐♦♥s ✐♥ ❜✐♥❛✉r❛❧
❛✉❞✐♦ ❛✉❣♠❡♥t❡❞ ❡♥✈✐r♦♥♠❡♥ts✳ ■♥ ❈❧❡♠❡♥s
❲ö❧❧♥❡r✱ ❡❞✐t♦r✱ ❇♦❞②✱ ❙♦✉♥❞ ❛♥❞ ❙♣❛❝❡ ✐♥
▼✉s✐❝ ❛♥❞ ❇❡②♦♥❞✿ ▼✉❧t✐♠♦❞❛❧ ❊①♣❧♦r❛t✐♦♥s✱
♣❛❣❡s ✷✸✺✕✷✺✻✳ ❘♦✉t❧❡❞❣❡✳ ❋♦rt❤❝♦♠✐♥❣✳

P❛✈❡❧ ❩❛❤♦r✐❦✳ ✷✵✵✷✳ ❆✉❞✐t♦r② ❞✐s♣❧❛② ♦❢
s♦✉♥❞ s♦✉r❝❡ ❞✐st❛♥❝❡✳ ■♥ Pr♦❝❡❡❞✐♥❣s ♦❢ ■♥✲
t❡r♥❛t✐♦♥❛❧ ❈♦♥❢❡r❡♥❝❡ ♦♥ ❆✉❞✐t♦r② ❉✐s♣❧❛②✳
■❈❆❉✳

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 20

A versatile workstation for the diffusion, mixing, and
post-production of spatial audio

Thibaut CARPENTIER
UMR 9912 STMS IRCAM–CNRS–UPMC

1, place Igor Stravinsky,
75004 Paris, France,

thibaut.carpentier@ircam.fr

Abstract

This paper presents a versatile workstation for the
diffusion, mixing, and post-production of spatial
sound. Designed as a virtual console, the tool pro-
vides a comprehensive environment for combining
channel–, scene–, and object–based audio. The in-
coming streams are mixed in a flexible bus archi-
tecture which tightly couples sound spatialization
with reverberation effects. The application supports
a broad range of rendering techniques (VBAP, HOA,
binaural, etc.) and it is remotely controllable via the
Open Sound Control protocol.

Keywords

sound spatialization, mixing, post-production,
object-based audio, Ambisonic

1 Introduction

This paper presents a port of the panoramix
workstation to Linux. First, we give a brief
presentation of panoramix and typical use-cases
of this environment. Then, we present some
recently added features and discuss the chal-
lenges involved with porting the application to
the Linux OS.

Panoramix is an audio workstation that was
primarily designed for the post-production of
3D audio materials. The needs and motivations
for such tool have been discussed in previous
publications [Carpentier, 2016; Carpentier and
Cornuau, 2016]: panoramix typically addresses
the post-production of mixed music concerts1

where the sound recording involves a large set
of heterogeneous elements (close microphones,
ambient miking, surround or Ambisonic micro-
phone arrays, electronic tracks, etc). During
the post-production stage, the sound engineers
need tools for spatializing sonic sources (e.g.,

1The practical use of the software in such a context
has also been demonstrated in the above-mentioned pub-
lications, through the case study of an electro-acoustic
piece by composer Olga Neuwirth.

spot microphones or electronic tracks), encod-
ing and decoding Ambisonic materials, adding
artificial reverberation, combining and mixing
the heterogeneous sound layers, as well as
rendering, monitoring and exporting the final
mix in multiple formats. Panoramix provides
a unified framework covering all the required
operations, and it allows to seamlessly integrate
all spatialization paradigms: channel-based,
scene-based, and object-based audio.
Besides post-production purposes, panoramix
is also suitable for the diffusion of sound in
live events since the audio engine operates in
realtime and without latency.2 Indeed, it has
recently been used by sound engineers and
computer musicians in order to control the
sound spatialization for live productions at
Ircam.

2 Architecture

The general architecture of the workstation has
been presented in previous work [Carpentier,
2016]. In a nutshell, the panoramix signal flow
consists of input tracks which are sent to busses
dedicated to spatialization and reverberation
effects. All busses are ultimately collected into
the Master strip, which delivers the signals to
the output audio driver. Each channel strip
in the workstation comes with a set of specific
DSP features.
One major improvement of the new version
herein presented is the introduction of “parallel
bussing”. Namely, this means that each track
can be sent to multiple busses in parallel.3 The
benefit of such parallel bussing architecture is

2Only a few specific DSP treatments may induce a la-
tency, e.g., the encoding of Eigenmike signals (discussed
later in this paper). Also there is the irreducible latency
of the audio I/O device.

3The number of parallel sends is currently restricted
to three busses, referred to as A/B/C. In practical mix-
ing situations, it appeared useless to provide more than
three sends although there is no technical constraint to
increase this limit.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 21

twofold; it allows:
1) to simultaneously produce a mix in multiple
formats: tracks can for instance be sent to a
VBAP bus and to an Ambisonic bus; both
busses are rendered in parallel, with shared
settings, and it is fast and easy to switch from
one to another e.g., for A/B comparison.
2) to “hybridize” spatialization techniques: for
instance, when producing binaural mixes, it is
sometimes useful to combine “true” binaural
synthesis (or recordings) with conventional
stereophony. Adjusting the level of the two
parallel busses, the sound engineer can balance
between the 3D layer (with well-known binaural
artifacts such as timbral coloration, front-back
confusions, in-head localization, etc.) and the
stereo layer (often considered as more robust
and spectrally transparent). Such hybridization
appeared especially useful and convincing when
producing content intended for non-individual
HRTF listening conditions.

Figures 1 and 2 present the signal-flow
graph of the tracks and busses respectively.
They also exhibit how the signal processing
blocks relate to the controllers exposed in the
user interface (see also Figure 4 for a general
view of this interface).
When parallel bussing is involved, some
elements of the depicted audio graph are
replicated and run concurrently.

Figure 1: Anatomy of a track: a track is essentially
used for pre-processing the incoming audio source
(compression, equalization, delay, etc.) and for gen-
erating a set of early reflections that will later 1)
feed the late reverb FDN and 2) be spatialized.

The overall processing architecture is inspired
from the Spat design [Jot and Warusfel, 1995;
Jot, 1999; Carpentier et al., 2015] which tightly
combines an artificial reverberation engine with
a panning module. This framework relies on a
simplified space-time-frequency model of room
acoustics wherein the generated room effect
is divided in four temporal segments (direct
sound, early reflections, late reflections, and re-
verb tail); each segment is individually filtered
and then spatialized (direct sound and early re-
flections are localized as point sources while the
late segments are spatially diffuse).
In the first release of panoramix , only the filter-
ing of direct sound was proposed. In the pre-
sented version, we have introduced additional
filters for the early and late reflection sections,
therefore extending the range of possible effects.

Figure 2: Anatomy of a bus: the purpose of a bus is
twofold: it generates a late/diffuse reverberation tail
(shared amongst multiple tracks for efficiency) and
it provides control over the spatialization rendering.
The lefthand side (violet frame) depicts the panning
bus; the righthand side (red frame) represents the
late reverb bus.

Note that the number of tracks, busses and
channel per strip is unlimited, only restricted
by the available computing power.

3 Main features

This section presents the main functionalities of
the software, with an emphasis on newly added
features. The interested reader may also refer
to [Carpentier, 2016].

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 22

3.1 2D panpot

The first version of panoramix was focusing ex-
clusively on 3D rendering approaches, namely
VBAP [Pulkki, 1997], Higher Order Ambison-
ics (HOA) [Daniel, 2001], and binaural [Møller,
1992]. It rapidly appeared convenient to also in-
tegrate 2D techniques, as it is common practice
to add horizontal-only layers even when mix-
ing for 3D formats. A number of traditional
2D techniques have therefore been implemented
(time and/or intensity panning laws such as 2D-
VBAP or VBIP [Pernaux et al., 1998], etc).
The workstation now offers a broad range of al-
gorithms, being able to address arbitrary loud-
speaker layouts.

3.2 Ambisonic processing

Higher Order Ambisonic (HOA) is a recording
and reproduction technique that can be used
to create spatial audio for circular or spheri-
cal loudspeaker arrangements. It has been sup-
ported in the workstation since its origin, and
further improvements have been made, espe-
cially in the encoding and transformation mod-
ules.

3.2.1 HOA encoding

Compact spherical microphone arrays such as
the Eigenmike4 are sometimes used for music
recordings as they are able to capture natural
sound fields with high spatial resolution. The
signals captured by such pickup systems do not
directly correspond to HOA components; an en-
coding stage is required. Such encoding usually
necessitates to regularize the modal radial fil-
ters as they are ill-conditioned for certain fre-
quencies. Various equalization approaches have
been proposed in the literature, in particular:
Tikhonov regularization [Moreau, 2006; Daniel
and Moreau, 2004], soft-limiting [Bernschütz et
al., 2011], filter bank applied in the modal do-
main [Baumgartner et al., 2011]. There is yet no
consensus about which method is the most ap-
propriate; consequently they have all been im-
plemented in panoramix . An adjustable maxi-
mum amplification factor is also controllable by
the user.
Besides HOA recordings, it is also possible to
synthesize Ambisonic virtual sources and there
is no restriction on the maximum encoding or-
der.
Note finally that panoramix supports all usual
HOA normalization (N3D, N2D, SN3D, SN2D,

4http://www.mhacoustics.com

FuMa, MaxN) and sorting (ACN, SID, Furse-
Malham) schemes.

3.2.2 HOA manipulations

One benefit of the Ambisonic formalism is that
a HOA stream can be flexibly manipulated so as
to alter the spatial properties of the sound field.
In addition to 3D rotations of the sound field
[Daniel, 2001; Daniel, 2009], two new transfor-
mation operators have been recently integrated
to the workstation:
1) a directional loudness processor [Kronlachner
and Zotter, 2014] which allows to spatially em-
phasize certain regions of the sound field (Fig-
ure 3) and
2) a spatial blur effect [Carpentier, 2017] which
reduces the resolution of an Ambisonic stream,
indeed simulating fractional order representa-
tion and varying the “bluriness” of the spatial
image.
These transformation operators are achieved by
applying a (time and frequency independent)
transformation matrix in the Ambisonic do-
main. The implementation is therefore very ef-
ficient, making them suitable for realtime au-
tomation.

Figure 3: HOA focalization interface: the simple
user interface allows to steer one or multiple virtual
beams in space; the radial axis is used to control the
“selectivity” of the virtual beam (from omnidirec-
tional to highly directional). This is especially use-
ful in post-production contexts, either to emphasize
the sound from certain directions (e.g., instruments)
or to attenuate undesired regions.

3.2.3 HOA decoding

A HOA bus serves as a decoder (with respect
to a given loudspeaker layout) and it comes
with a comprehensive set of decoding flavors in-
cluding: sampling Ambisonic decoder [Daniel,

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 23

http://www.mhacoustics.com

2001], mode-matching [Daniel, 2001], energy-
preserving [Zotter et al., 2012], and all-round
decoding [Zotter and Frank, 2012]. In addition,
dual-band decoding is possible, with adjustable
crossover frequency, and in-phase or max-re op-
timizations can be applied in each band [Daniel,
2001].

3.3 Binaural rendering

Panoramix implements binaural synthesis for
3D rendering over headphones. It is possi-
ble to load HRTF in the SOFA/AES-69 for-
mat [Majdak et al., 2013]. Two SOFA con-
ventions are currently supported: “Simple-
FreeFieldHRIR” for convolution with HRIR,
and “SimpleFreeFieldSOS” for filtering with
HRTF represented as second-order sections and
interaural time delay.5

SOFA data can be either loaded from a local
file or remotely accessed through the OpenDAP
protocol [Carpentier, 2015a; Carpentier et al.,
2014a]. The binaural bus features a user in-
terface for rapid navigation/search through the
available SOFA files (Figure 5).

Figure 5: UI for loading or downloading SOFA
files. ➀ Filters for quick search. ➁ Text search field.
➂ Results matching query.

3.4 Reverberation

As mentioned in previous sections, panoramix
embeds a reverberation engine that allows to
generate artificial room effects during the mix-
ing process. The reverb processor currently
used is a feedback delay network (FDN) origi-
nally designed by [Jot and Chaigne, 1991]. This
FDN is particularly flexible and scalable; in typ-
ical use-cases, it involves eight feedback chan-
nels and provides decay control in three fre-
quency bands.
In addition to that, there is an on-going work
to further integrate convolution-based or hybrid
reverberators [Carpentier et al., 2014b] in the
bus architecture.

5see www.sofaconventions.org for further details on
SOFA conventions.

3.5 OSC communication

All parameters of the panoramix application
can be remotely accessed via the Open Sound
Control (OSC) protocol [Wright, 2005]. This
fosters easy and efficient communication with
other applications (e.g., Pd) or external devices
(e.g., head-tracker for realtime binaural render-
ing).
OSC communication may also be used for
remote automation with a digital audio
workstation (DAW) through the ToscA plu-
gin [Carpentier, 2015b]. Note, however, that
the latter has not yet been ported to the Linux
platform.

A dedicated window allows to monitor the
current OSC state of the panoramix engine (see
➆ in Figure 4). Also, the mixing session itself
is stored to disk as a “stringified” OSC bundle
(human readable and editable).

3.6 Enhanced productivity

A number of other features have been added
for enhanced productivity, compared to pre-
vious versions. This includes: a large set of
keyboard shortcuts (the key mapping can fur-
ther be customized and stored – see ➇ in Fig-
ure 4) for handling most common tasks (create
new tracks, enable/disable groups, etc.), tooltip
pop-up that present inline help tips, the possi-
bility to split the console window in multiple
windows (especially useful when using multi-
ple screens and dealing with a high number of
tracks), etc.

4 Software aspects and Linux port

Panoramix was originally developed as a set
of two Max/MSP6 externals (panoramix∼ for
the DSP rendering and panoramix for the
GUI controller) and released in the form of a
Max standalone application for macOS and
Windows.
The DSP code is written is C++. It is OS-
independent, host-independent (i.e. it does
not rely on Max/MSP) and highly optimized,
extensively using vectorized SIMD instructions
and high performance functions from the
Intel R© Integrated Performance Primitives.7

The application can easily handle dozens or
even hundreds of tracks on a modern computer.
The GUI component, also written in C++, is

6http://www.cycling74.com
7http://software.intel.com

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 24

www.sofaconventions.org
http://www.cycling74.com
http://software.intel.com

1

3

4

2

5

6

7

8

9

Figure 4: panoramix running in Ubuntu with Jack server (QJackctl) as audio pilot. ➀ Input tracks in the
mixing console. ➁ Spatialization and reverberation busses. ➂ Geometrical representation of the sound scene.
➃ Parametric equalizer. ➄ Group management. ➅ Jack server and inter-application connections. ➆ Status
window: allows to inspect the current state of the engine and all parameters exposed to OSC messaging.
➇ Shortcut window: allows to edit the key mappings. ➈ OSC setup window: configure input and output
port for remote communication.

built with the Juce8 framework which facili-
tates cross-platform development and provides
a large set of useful widgets.

For the Linux environment, it was first
envisioned to port the Max externals to Pure
Data (Pd) [Puckette, 1997]. Porting the DSP
engine is straightforward as the Max and Pd
APIs are relatively similar in this regard. Port-
ing the GUI object, however, was problematic:
Pd uses Tcl/Tk as its windowing system, and
to the best of the author’s knowledge there
is no easy way to embed GUI components
developed with other frameworks (such as Juce
or Qt) in the Tk engine. As an alternative, it
was decided to create an autonomous appli-
cation, handling both the GUI and the audio
engine (i.e. an “AudioAppComponent” in
Juce’s dialect). The application thus operates
independently of any host engine (Pd or Max)
and it processes the audio directly to/from the
audio devices. Furthermore, it is compatible
with the Jack Audio Connection Kit,9 which

8http://juce.com/
9http://www.jackaudio.org

makes it pluggable with potentially any audio
application. In typical use-cases, a digital
audio workstation such as Ardour10 is used to
send audio streams to the panoramix processor.
The processed buffers may be re-routed to the
DAW, e.g., for bouncing, or directly played
back through the output device (see Figure 6).

Figure 6: Typical workflow.

10http://www.ardour.org

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 25

http://juce.com/
http://www.jackaudio.org
http://www.ardour.org

5 Conclusions

This paper discussed the Linux port of an au-
dio engine designed for the diffusion, mixing,
and post-production of spatial audio. We high-
lighted several new features that extend the pos-
sibilities of the tool and improve productivity
and user experience. Future work will mainly
focus on the integration of convolution-based
reverberation into the framework herein pre-
sented.

6 Acknowledgements

The author is very grateful to Clément Cor-
nuau, Olivier Warusfel, and the sound engineer-
ing team at Ircam for their invaluable help in
the conception of this tool. Thanks also to An-
ders Vinjar for his insightful advices and beta
testing on the Linux platform.

References

Robert Baumgartner, Hannes Pomberger,
and Matthias Frank. 2011. Practical im-
plementation of radial filters for ambisonic
recordings. In Proc. of the 1st International
Conference on Spatial Audio (ICSA), Det-
mold, Germany, Nov.

Benjamin Bernschütz, Christoph
Pörschmann, Sascha Spors, and Stefan
Weinzierl. 2011. Soft-limiting der modalen
Amplitudenverstärkung bei sphärischen
Mikrofonarrays im Plane Wave Decompo-
sition Verfahren. In Proc. of 37th German
Annual Convention on Acoustics (DAGA),
Düsseldorf, Germany, March.

Thibaut Carpentier and Clément Cornuau.
2016. panoramix: station de mixage et post-
production 3D. In Proc. of the Journées
d’Informatique Musicale (JIM), pages 162 –
169, Albi, France, April.

Thibaut Carpentier, Hélène Bahu, Markus
Noisternig, and Olivier Warusfel. 2014a.
Measurement of a head-related transfer func-
tion database with high spatial resolution.
In Proc. of the 7th EAA Forum Acusticum,
Kraków, Poland, Sept.

Thibaut Carpentier, Markus Noisternig, and
Olivier Warusfel. 2014b. Hybrid Reverbera-
tion Processor with Perceptual Control. In
Proc. of the 17th Int. Conference on Digital
Audio Effects (DAFx), pages 93 – 100, Erlan-
gen, Germany, Sept.

Thibaut Carpentier, Markus Noisternig, and
Olivier Warusfel. 2015. Twenty Years of Ir-
cam Spat: Looking Back, Looking Forward.
In Proc. of the 41st International Computer
Music Conference (ICMC), pages 270 – 277,
Denton, TX, USA, Sept.

Thibaut Carpentier. 2015a. Binaural synthe-
sis with the Web Audio API. In Proc. of
the 1st Web Audio Conference (WAC), Paris,
France, Jan.

Thibaut Carpentier. 2015b. ToscA: An OSC
Communication Plugin for Object-Oriented
Spatialization Authoring. In Proc. of the 41st

International Computer Music Conference,
pages 368 – 371, Denton, TX, USA, Sept.

Thibaut Carpentier. 2016. Panoramix: 3D
mixing and post-production workstation. In
Proc. of the 42nd International Computer
Music Conference (ICMC), pages 122 – 127,
Utrecht, Netherlands, Sept.

Thibaut Carpentier. 2017. Ambisonic spa-
tial blur. In Proc. of the 142nd Convention of
the Audio Engineering Society (AES), Berlin,
Germany, May.

Jérôme Daniel and Sébastien Moreau. 2004.
Further Study of Sound Field Coding with
Higher Order Ambisonics. In Proc. of the
116th Convention of the Audio Engineering
Society (AES), Berlin, Germany, May.

Jérôme Daniel. 2001. Représentation de
champs acoustiques, application à la trans-
mission et à la reproduction de scènes
sonores complexes dans un contexte mul-
timédia. Ph.D. thesis, Université de Paris VI.

Jérôme Daniel. 2009. Evolving Views on
HOA : From Technological To Pragmatic
Concerns. In Proc. of the 1st Ambisonics
Symposium, Graz, Austria, June.

Jean-Marc Jot and Antoine Chaigne. 1991.
Digital delay networks for designing artificial
reverberators. In Proc. of the 90th Conven-
tion of the Audio Engineering Society (AES),
Paris, France, Feb.

Jean-Marc Jot and Olivier Warusfel. 1995. A
Real-Time Spatial Sound Processor for Mu-
sic and Virtual Reality Applications. In Proc.
of the of the International Computer Music
Conference (ICMC), Banff, Canada.

Jean-Marc Jot. 1999. Real-time spatial pro-
cessing of sounds for music, multimedia and

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 26

interactive human-computer interfaces. ACM
Multimedia Systems Journal (Special issue on
Audio and Multimedia), 7(1):55 – 69.

Matthias Kronlachner and Franz Zotter.
2014. Spatial transformations for the en-
hancement of Ambisonic recordings. In Proc.
of the 2nd International Conference on Spa-
tial Audio (ICSA), Erlangen, Germany, Feb.

Piotr Majdak, Yukio Iwaya, Thibaut Carpen-
tier, Rozenn Nicol, Matthieu Parmentier, Ag-
nieszka Roginska, Yôiti Suzuki, Kanji Watan-
abe, Hagen Wierstorf, Harald Ziegelwanger,
and Markus Noisternig. 2013. Spatially Ori-
ented Format for Acoustics: A Data Ex-
change Format Representing Head-Related
Transfer Functions. In Proc. of the 134th

Convention of the Audio Engineering Society
(AES), Roma, Italy, May 4-7.

Henrik Møller. 1992. Fundamentals of bin-
aural technology. Applied Acoustics, 36:171 –
218.

Sébastien Moreau. 2006. Étude et réalisation
d’outils avancés d’encodage spatial pour la
technique de spatialisation sonore Higher Or-
der Ambisonics : microphone 3D et contrôle
de distance. Ph.D. thesis, Université du
Maine.

Jean-Marie Pernaux, Patrick Boussard, and
Jean-Marc Jot. 1998. Virtual Sound Source
Positioning and Mixing in 5.1 Implementa-
tion on the Real-Time System Genesis. In
Proc. of the Digital Audio Effects Conference
(DAFx), Barcelona, Spain, Nov.

Miller Puckette. 1997. Pure Data. In Proc.
of the International Computer Music Confer-
ence (ICMC), pages 224 – 227, Thessaloniki,
Greece.

Ville Pulkki. 1997. Virtual Sound Source Po-
sitioning Using Vector Base Amplitude Pan-
ning. Journal of the Audio Engineering Soci-
ety, 45(6):456 – 466, June.

Matthew Wright. 2005. Open Sound Control:
an enabling technology for musical network-
ing. Organised Sound, 10(3):193 – 200, Dec.

Franz Zotter and Matthias Frank. 2012.
All-round ambisonic panning and decoding.
Journal of the Audio Engineering Society,
60(10):807 – 820.

Franz Zotter, Hannes Pomberger, and
Markus Noisternig. 2012. Energy-preserving

ambisonic decoding. Acta Acustica united
with Acustica, 98:37 – 47.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 27

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 28

Teaching Sound Synthesis in C/C++ on the Raspberry Pi

Henrik von Coler and David Runge
Audio Communication Group, TU Berlin

voncoler@tu-berlin.de
david.runge@campus.tu-berlin.de

Abstract

For a sound synthesis programming class in C/C++,
a Raspberry Pi 3 was used as runtime and develop-
ment system. The embedded system was equipped
with an Arch Linux ARM, a collection of libraries
for sound processing and interfacing, as well as with
basic examples. All material used in and created
for the class is freely available in public git reposito-
ries. After a unit of theory on sound synthesis and
Linux system basics, students worked on projects
in groups. This paper is a progress report, point-
ing out benefits and drawbacks after the first run of
the seminar. The concept delivered a system with
acceptable capabilities and latencies at a low price.
Usability and robustness, however, need to be im-
proved in future attempts.

Keywords

Jack, Raspberry Pi, C/C++ Programming, Educa-
tion, Sound Synthesis, MIDI, OSC, Arch Linux

1 Introduction

The goal of the seminar outlined in this pa-
per was to enable students with different back-
grounds and programming skills the develop-
ment of standalone real-time sound synthesis
projects. Such a class on the programming
of sound synthesis algorithms is, among other
things, defined by the desired level of depth in
signal processing. It may convey an application-
oriented overview or a closer look at algorithms
on a sample-wise signal processing level, as in
this case. Based on this decision, the choice
of tools, respectively the programming environ-
ment should be made.

Script languages like Matlab or Python are
widely used among students and offer a comfort-
able environment, especially for students with-
out a background in computer science. They
are well suited for teaching fundamentals and
theoretical aspects of signal processing due to
advanced possibilities of debugging and visual-
isation. Although real-time capabilities can be

added, they are not considered for exploring ap-
plied sound synthesis algorithms in this class.
In a more application-based context, graphi-

cal programming environments like Pure Data
(Pd), MAX MSP or others would be the first
choice. They allow rapid progress and interme-
diate results. However, they are not the best
platform to enhance the knowledge of sound
synthesis algorithms on a sample-wise level by
nature.

C/C++ delivers a reasonable compromise be-
tween low level access and the comfort of using
available libraries for easy interfacing with hard-
ware. For using C/C++ in the development
of sound synthesis software, a software devel-
opment kit (SDK) or application programming
interface (API) is needed in order to offer access
to the audio hardware.
Digital audio workstations (DAW) use plug-

ins programmed with SDKs and APIs like Stein-
berg’s VST, Apple’s Audio Units, Digidesign’s
RTAS, the Linux Audio Developer’s Simple
Plugin API (LADSPA) and its successor LV2,
which offer quick access to developing audio
synthesis and processing units. A plugin-host
is necessary to run the resulting programs and
the structure is predefined by the chosen plat-
form. The JUCE framework [34] offers the
possibility of developing cross platform applica-
tions with many builtin features. Build targets
can be audio-plugins for different systems and
standalone applications, including Jack clients,
which would present an alternative to the cho-
sen approach.
Another possibility is the programming of

Pd externals in the C programming language
with the advantage of quick merging of the self-
programmed components with existing Pd in-
ternals. FAUST [6] also provides means for cre-
ating various types of audio plugins and stan-
dalone applications. Due to a lack in functional
programming background it was not chosen.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 29

For various reasons we settled for the Jack
API [18] to develop command line programs on
a Linux system.

• Jack clients are used in the research on bin-
aural synthesis and sound field synthesis,
for example by the WONDER interface [15]
or the SoundScape Renderer [14]. Results
of the projects might thus be potentially
integrated into existing contexts.

• Jack clients offer quick connection to other
clients, making them as modular as audio-
plugins in a DAW.

• The Jack API is easy to use, even for be-
ginners. Once the main processing func-
tion is understood, students can immedi-
ately start inserting their own code.

• The omission of a graphical user interface
for the application leaves more space for
focusing on the audio-related problems.

• The proposed environment is independent
of proprietary components.

A main objective of the seminar was to equip
the students with completely identical systems
for development. This avoids troubles in han-
dling different operating systems and hardware
configurations. Since no suitable computer pool
was available, we aimed at providing a set of
machines as cheap as possible for developing,
compiling and running the applications. The
students were thus provided with a Raspberry
Pi 3 in groups of two. Besides being one of the
cheapest development systems, it offers the ad-
vantage of resulting in a highly portable, quasi
embedded synthesizer for the actual use in live
applications.

The remainder of this paper is organized as
follows: Section 2 introduces the used hard- and
software, as well as the infrastructure. Section 3
presents the concept of the seminar. Section 4
briefly summarizes the experiences and evalu-
ates the concept.

2 Technical Outline

2.1 Hardware

A Raspberry Pi 3 was used as development
and runtime system. The most recent version
at that time was equipped with 1.2GHz 64-bit
quad-core ARMv8 CPU, 802.11nWireless LAN,
a Bluetooth adapter, 1GB RAM, 4 USB ports
40 GPIO pins and various other features [11].

Unfortunately the on-board audio interface
of the Raspberry Pi could not be configured
for real-time audio applications. It does not
feature an input and the Jack server could
only be started with high latencies. After try-
ing several interfaces, a Renkforce USB-Audio-
Adapter was chosen, since it delivered an ac-
ceptable performance at a price of 10 e. The
Jack server did perform better with other inter-
faces, yet at a higher price and with a larger
housing.

Students were equipped with MIDI interfaces
from the stock of the research group and private
devices. The complete cost for one system, in-
cluding the Raspberry Pi 3 with housing, SD
card, power adapter and the audio interface,
were thus kept at about 70 e(vs. the integrated
low-latency platform bela[5], that still ranks at
around 120 eper unit).

2.2 Operating System

First tests on the embedded system involved
Raspbian [12], as it is highly integrated and
has a graphical environment preinstalled, that
eases the use for beginners. Integration with
the libraries used for the course proved to be
more complicated however, as they needed to
be added to the software repository for the ex-
amples.

A more holistic approach, integrating the op-
erating system, was aimed at, in order to leave
as few dependencies on the students’ side as pos-
sible and not having to deal with the hosting of
a custom repository of packages for Raspbian.
Due to previous experience with low latency se-
tups using Arch Linux [7], Arch Linux ARM
[2] was chosen. With its package manager pac-
man [9] and the Arch Build System [1] an easy
system-wide integration of all used libraries and
software was achieved by providing them as pre-
installed packages (with them either being avail-
able in the standard repositories, or the Arch
User Repository[3]). Using Arch Linux ARM,
it was also possible to guarantee a systemd [13]
based startup of the needed components, which
is further described in Section 2.5. At the time
of preparation for the course, the 64bit vari-
ant (AArch64) - using the mainline kernel - was
not available yet. At the time of writing it is
still considered experimental, as some vendor
libraries are not yet available for it. Instead the
ARMv7 variant of the installation image was
used, which is the default for Raspberry Pi 2.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 30

2.3 Libraries

All libraries installed on the system are listed
in Tab. 1. For communicating with the au-
dio hardware, the Jack API was installed. The
jackcpp framework adds a C++ interface to
Jack. Additional libraries allowed the handling
of audio file formats, ALSA-MIDI interfacing,
Open Sound Control, configuration files and
Fast Fourier Transforms.

Table 1: Libraries installed on the development
system

Library Ref. Purpose

jack2 [18] Jack audio API

jackcpp [26] C++ wrapper for jack2

sndfile [19] Read and write audio files

rtmidi [32] Connect to MIDI devices

liblo [23] OSC support

yaml [20] Configuration files

fftw3 [22] Fourier transform

boost [4] Various applications

2.4 Image

The image for the system is available for down-
load1 and can be asked for by mailing to the
authors in case of future unavailability. Installa-
tion of the image follows the standard procedure
of an Arch Linux ARM installation for Rasp-
berry Pi 3, using the blockwise copy tool dd,
which is documented in the course’s git reposi-
tory [31].

2.5 System Settings

The most important goal was to achieve a
round-trip latency below 10ms. This would not
be sufficient for real-time audio applications in
general, but for teaching purposes. With the
hardware described in Section 2.1, stable Jack
server command line options were evaluated,
leading to a round-trip latency of 2.9ms:

/usr/bin/jackd -R \K
-p 512 \
-d alsa \

-d hw:Device \
-n 2 \
-p 64 \
-r 44100

1https://www2.ak.tu-berlin.de/~drunge/
klangsynthese

As these settings were not realizable with the
internal audio card, the snd-bcm2835 module -
the driver in use for it - was blacklisted using
/etc/modprobe.d/*, to not use the sound device
at all.
For automatic start of the low-latency au-

dio server and its clients, systemd user ser-
vices were introduced, that follow a user session
based setup. The session of the main system
user is started automatically as per systemd’s
user@.service. This is achieved by enabling the
linger status of said user with the help of loginctl
[8], which activates its session during boot and
starts its enabled services.
A specialized systemd user service [30] allows
for Jack’s startup with an elevated CPU sched-
uler without the use of dbus [21]. The stu-
dents’ projects could be automatically started
as user services, that rely on the audio server
being started by enabling services such as this
example:

[Unit]
Description=Example project
After=jack@rpi -usb -44100. service
[Service]
ExecStart =/path/to/executable \

parameter1 \
paramter2

Restart=on -failure
[Install]
WantedBy=default.target

2.6 Infrastructure

For allowing all students in the class the access
via SSH, a WIFI was set up, providing fixed
IP addresses for all Raspberry Pis. Network
performance showed to be insufficient to handle
all participants simultaneously, though. Thus,
additional parallel networks were installed.
For home use, students were instructed to

provide a local network with their laptops, or
using their home network over WiFi or cable.
Depending on their operating system, this was
more or less complicated.

3 The Seminar

The seminar was addressed to graduate stu-
dents with different backgrounds, such as com-
puter science, electrical engineering, acoustics
and others. One teacher and one teaching assis-
tant were involved in the planning, preparation
and execution of the classes.
The course was divided into a theoretical and

a practical part. In the beginning, theory and
basics where taught in mixed sessions. The fi-

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 31

nal third of the semester was dedicated to su-
pervised project work.

3.1 System Introduction

Students were introduced to the system by giv-
ing an overview over the tools needed and pre-
senting the libraries with their interfaces. Users
of Linux, Mac and Windows operating systems
took part in the class. Since many students
lacked basic Linux skills, first steps included us-
ing Secure Shell (SSH) to access the devices,
which proved to be hard for attendees without
any knowledge on the use of the command-line
interface. Windows users were aided to install
and use PuTTY [10] for the purpose of connect-
ing, as there is no native SSH client. After two
sessions, each group was able to reach the Rasp-
berry Pi in class, as well as at home.

3.2 Sound Synthesis Theory

Sound synthesis approaches were introduced
from an algorithmic point of view, showing ex-
amples of commercially available implementa-
tions, also regarding their impact on music pro-
duction and popular culture. Students were
provided with ready-to-run examples from the
course repository for some synthesis approaches,
as well as with tasks for extending these.
Important fundamental literature was pro-

vided by Zölzer [35], Pirkle [27] and Roads [29].
The taxonomy of synthesis algorithms proposed
by Smith [33] was used to structure the outline
of the class, as follows.
A section on Processed Recording dealt with

sampling and sample-based approaches, like
wave-table synthesis, granular synthesis, vector
synthesis and concatenative synthesis.
Subtractive synthesis and analog modeling

were treated as the combination of the basic
units oscillators, filters and envelopes. Fil-
ters were studied more closely, considering IIR
and FIR filters and design methods like bilin-
ear transform. A ready to run biquad example
was included and a first order low-pass was pro-
grammed in class.
Additive Synthesis and Spectral Modeling

were introduced by an analysis-resynthesis pro-
cess of a violin tone in the SMS model [25], con-
sidering only the harmonic part.
Physical Modeling was treated for plucked

strings, starting with the Karplus-Strong algo-
rithm [17], advancing to bidirectional [24].
FM Synthesis [16] was treated as a repre-

sentative of abstract algorithms in the class.
The concept was mainly taught by a closer look

at the architecture and programming of the
Yamaha DX7 synthesizer.

3.3 Projects

Out of the 35 students who appeared to the first
meetings, 18 worked on projects throughout the
whole semester. It should be noted that (with
one exception) only Linux and MAC users con-
tinued.
No restrictions were made regarding the

choice of the topic, exept that it should result
in an executable program on the Raspberry PI.
The student projects included:

• A vector synthesis engine, allowing the
mixture of different waveforms with a suc-
ceeding filter section

• A subtractive modeling synth with modu-
lar capabilities

• A physical string model, based on the
Karplus-Strong Extended with dispersion
filter

• A sine-wave Speech Synthesis [28] effect,
which includes a real-time FFT

• A guitar-controlled subtractive synthesizer,
using zero-crossing rate for pitch detection

• A wave-digital-filter implementation with
sensor input from the GPIOs

In order to provide a more suitable platform
for running embedded audio applications, one
group used buildroot2 to create a custom oper-
ating system.

4 Conclusions

The use of the Raspberry Pi 3 for the program-
ming of Jack audio applications showed to be a
promising approach. A system with acceptable
capabilities and latencies could be provided at
a low price. Accessibility and stability, how-
ever, need to be improved in future versions: A
considerable amount of time was spent work-
ing on these issues in class and the progress in
the projects was therefore delayed considerably.
The overhead in handling Linux showed to be a
major problem for some students and probably
caused some people to drop out. A possible step
would be to provide a set with monitor, key-
board and mouse, as this would increase acces-
sibility. The stability of the Jack server needs to
be worked on, as sometimes the hardware would

2https://buildroot.org

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 32

not be started properly, leading to crashing Jack
clients.
In future seminars, which are likely to be con-

ducted after these principally positive experi-
ences, most of the issues should be worked out
and the image, as well as the repository will
have been improved.

References

[1] Arch Build System - ArchWiki. https:
//wiki.archlinux.org/index.php/Arch_
Build_System.

[2] Arch Linux ARM homepage. https://www.
archlinuxarm.org/.

[3] Arch User Repository. https://aur.
archlinux.org/.

[4] Boost C++ Libraries - Homepage. http://
www.boost.org.

[5] buildroot homepage. https://bela.io.

[6] FAUST - Homepage. http://faust.grame.
fr/.

[7] Linux Audio Conference 2015 - Workshop:
Arch Linux as a lightweight audio platform
- Slides. http://lac.linuxaudio.org/2015/
download/lac2015_arch_slides.pdf.

[8] loginctl man page. https://www.
freedesktop.org/software/systemd/man/
loginctl.

[9] Pacman homepage. https://www.archlinux.
org/pacman/.

[10] PuTTY Homepage. http://www.putty.org/.

[11] Raspberry PI Homepage. https:
//www.raspberrypi.org/products/
raspberry-pi-3-model-b/.

[12] Raspbian homepage. https://www.raspbian.
org/.

[13] systemd homepage. https://www.
freedesktop.org/wiki/Software/systemd/.

[14] Jens Ahrens, Matthias Geier, and Sascha Spors.
The soundscape renderer: A unified spatial au-
dio reproduction framework for arbitrary ren-
dering methods. In Audio Engineering Soci-
ety Convention 124. Audio Engineering Society,
2008.

[15] Marije AJ Baalman. Updates of the wonder
software interface for using wave field synthe-
sis. LAC2005 Proceedings, page 69, 2005.

[16] John M Chowning. The synthesis of complex
audio spectra by means of frequency modula-
tion. Journal of the audio engineering society,
21(7):526–534, 1973.

[17] Julius O. Smith David A. Jaffe. Extensions of
the Karplus-Strong Plucked-String Algorithm.
Computer Music Journal, 7(2):56–69, 1983.

[18] Paul Davies. JACK API. http://www.
jackaudio.org/.

[19] Erik de Castro Lopo. Libsndfile. http://www.
mega-nerd.com/libsndfile/.

[20] Clark C. Evans. YAML: YAML Ain’t Markup
Language. http://yaml.org/.

[21] Free Desktop Foundation. dbus home-
page. https://wiki.freedesktop.org/www/
Software/dbus/.

[22] Matteo Frigo and Steven G. Johnson. FFTW
Fastest Fourier Transform in the West. http:
//www.fftw.org/.

[23] Steve Harris and Stephen Sinclair. liblo Home-
page: Lightweight OSC implementation. http:
//liblo.sourceforge.net/.

[24] Matti Karjalainen, Vesa Välimäki, and Tero
Tolonen. Plucked-string models: From the
Karplus-Strong algorithm to digital wave-
guides and beyond. Computer Music Journal,
22(3):17–32, 1998.

[25] Scott N. Levine and Julius O. Smith. A
Sines+Transients+Noise Audio Representation
for Data Compression and Time/Pitch Scale
Modi cations. Proceedings of the 105th Audio
Engineering Society Convention, 1998.

[26] Alex Norman. JackCpp. http://www.x37v.
info/projects/jackcpp/.

[27] Will Pirkle. Designing Software Synthesizer
Plug-Ins in C++. Focal Press, 2014.

[28] Robert E Remez, Philip E Rubin, David B
Pisoni, Thomas D Carrell, et al. Speech percep-
tion without traditional speech cues. Science,
212(4497):947–949, 1981.

[29] Curtis Roads. The computer music tutorial.
MIT press, 1996.

[30] David Runge. uenv homepage. https://git.
sleepmap.de/software/uenv.git/about/.

[31] David Runge and Henrik von Coler. AK-
Klangsynthese Repository. https://gitlab.
tubit.tu-berlin.de/henrikvoncoler/
Klangsynthese_PI.

[32] Gary P. Scavone. RtMidi. http://www.music.
mcgill.ca/~gary/rtmidi/.

[33] Julius O. Smith. Viewpoints on the History of
Digital Synthesis. In Proceedings of the Inter-
national Computer Music Conference, pages 1–
10, 1991.

[34] Jules Storer. JUCE. https://www.juce.com/.

[35] Udo Zoelzer, editor. DAFX: Digital Audio Ef-
fects . John Wiley & Sons, Inc., New York, NY,
USA, 2 edition, 2011.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 33

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 34

Open signal processing software platform for hearing aid research
(openMHA)

Tobias Herzke1 and Hendrik Kayser2 and Frasher Loshaj1 and Giso Grimm1,2

and Volker Hohmann1,2

1 HörTech gGmbH and Cluster of Excellence “Hearing4all”,
Marie-Curie-Str. 2, D-26129 Oldenburg, Germany

2 Medizinische Physik and Cluster of Excellence “Hearing4all”
Universität Oldenburg, D-26111 Oldenburg, Germany

info@openmha.org

Abstract

Hearing aids help hearing impaired users partici-
pate in the communication society. Development
and improvement of hearing aid signal processing
algorithms takes place in the industry and in aca-
demic research. With openMHA, we present a de-
velopment and evaluation platform that is able to
execute hearing aid signal processing in real-time
on standard computing hardware with a low delay
between sound input and output. We lay out the
application specific requirements and present how
openMHA meets these and will be helpful in future
research in the field of signal processing for hearing
aids.

Keywords

Hearing aids, audio signal processing, plugin host

1 Introduction

Development of hearing aid signal processing is
widely conducted by hearing aid manufacturers
on proprietary systems that are not accessible
to the research community and that underlie
commercial constraints. Providing open tools
to the hearing aid research community lowers
barriers, accelerates studies with novel acoustic
processing algorithms and facilitates translation
of these advances into widespread use with hear-
ing aids, cochlear implants, and consumer elec-
tronics devices for sub-clinical hearing support.
A software platform for the development and
evaluation of hearing aid algorithms should

• offer a complete set of hearing aid signal
processing reference algorithms that can be
combined with newly developed algorithms
to form a complete hearing aid signal pro-
cessing chain,

• enable researchers to perform offline-
processing as well as real-time signal pro-
cessing with a reliable low delay between
acoustic input and output of less than 10
milliseconds, even when algorithms need
significant processing power,

• provide a library for common signal pro-
cessing tasks and commonly needed ser-
vices in hearing aid signal processing, like
support for acoustic calibration and filter-
banks,

• be able to run on a wide range of hardware,
from high-performance PCs to execute
bleeding-edge algorithms in real-time, to
portable, power-efficient, headless, battery-
powered devices for improved testing capa-
bilities in realistic usage scenarios and field
tests.

Several open-source tools for audio signal pro-
cessing, that can also be used in hearing aid
research, exist:

Octave. Octave is actively used in hearing aid
research for the development of signal process-
ing algorithms for hearing aids. It is a suitable
tool to quickly develop, change and evolve iso-
lated algorithms as long as no real-time audio
processing is required. However, Octave is un-
suitable for executing hearing aid algorithms in
real-time with live input and output sound sig-
nals with low delay.[Eaton et al., 2015]

NumPy/SciPy. Scientific Computing Tools
for Python enable researchers to develop signal
processing algorithms. Technically, this soft-
ware platform is equivalent to octave, but it is
to our knowledge currently not actively used in
hearing aid research.[Jones et al., 2001]

Pure Data. Pd is a real-time signal process-
ing platform. It features a graphical program-
ming interface. Pd is actively used mainly by
artists to perform signal processing of music and
other data. Pd can achieve a low delay in real-
time processing. In principle it would be possi-
ble to develop hearing aid signal processing al-
gorithms on Pd, and have these algorithms pro-
cess audio signal in real-time. We are not aware
of any hearing aid research being performed on
the Pd platform and would consider it too la-

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 35

borious to implement modern hearing aid algo-
rithms in the graphical programming environ-
ment. Pd can be extended with C, therefore,
hearing aid algorithms could be implemented
for Pd in C or C++.[Puckette, 1996]

Plugin hosts. Various plugin hosts for differ-
ent plugin architectures (VST, LADSPA, LV2)
exist, that can load and combine algorithms
in plugins to form complex signal processing
chains. Most hosts can achieve a low delay in
real-time audio processing. Plugins can be writ-
ten in C or C++ using the plugin-architecture
specific SDK. (Using the VST SDK requires
signing a license agreement.) Plugin hosts are
mainly used by sound engineers and also by
artists to process recorded or live music and
other sounds.

Signal processing toolboxes and lan-
guages. A signal processing toolbox like the
Synthesis ToolKit (STK) [Cook and Scavone,
1999] and domain-specific languages (DSL) like
SuperCollider [McCartney, 2002] and Faust [Or-
larey et al., 2009] provide useful signal process-
ing primitives to ease development of audio sig-
nal processing algorithms. We are not aware of
any hearing aid research being performed using
these toolboxes and DSLs.

While the dynamic programming languages
Octave and Python are suitable to develop al-
gorithms and execute them offline, their run-
time environment is not suitable for real-time
processing when low delay is required at high
processing loads. Octave and Python do not
give algorithm implementers the necessary con-
trol to prevent heap memory allocation in the
signal processing path, which can cause unpre-
dictable interruptions in the real-time process-
ing due to priority inversion situations. Pd and
plugin hosts are real-time safe themselves and
allow algorithms to be implemented in C or
C++. The C and C++ programming languages
allow developers sufficient control to implement
algorithms in a real-time safe way. However,
Pd and plugin hosts do not provide commonly
needed services to hearing aid signal processing
developers like calibration or an existing set of
hearing aid algorithms.
The HörTech Master Hearing Aid (MHA)

[Grimm et al., 2006; Grimm et al., 2009a] is
an existing software platform for hearing aid al-
gorithm development and evaluation that meets
all the requirements and has been used by the
hearing aid industry as well as in academic re-

openMHA

plugins IO

audio backend
(Jack, File, TCP)

MHAhostlibMHAToolbox

control applications
(e.g., Octave)

Figure 1: Structure of the openMHA. The
openMHA contains a toolbox library “libMHA-
Toolbox”, a command line host application,
which acts as an openMHA plugin host and pro-
vides the configuration interface, and openMHA
plugins.

search. Until recently, it was only available
as a closed-source commercial product. To en-
able and facilitate collaborative research efforts
and comparative studies in the research commu-
nity, an open-source version of the MHA soft-
ware platform for real-time audio signal process-
ing is now being developed and made available:
the open Master Hearing Aid (openMHA). In
February 2017, a pre-release of the openMHA
has been published on GitHub under an open-
source license (AGPL3) by [HörTech gGmbH
and Universität Oldenburg, 2017]. This pre-
release features an initial set of reference al-
gorithms for hearing aid processing, which will
be expanded in subsequent releases. Thereby,
openMHA provides a growing benchmark for
the development and investigation of novel al-
gorithms on this platform in the future. With
the openMHA we provide an open-source tool
that is tailored to the needs of hearing aid al-
gorithm research which was not available before
as a specialized tool in the open-source domain.

2 Structure

The openMHA can be split into four major com-
ponents (see Figure 1 for an overview):

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 36

1. The openMHA command line application

2. Signal processing plugins

3. Audio input-output (IO) plugins

4. The openMHA toolbox library

The openMHA command line application acts
as a plugin host. It can load signal process-
ing plugins as well as audio input-output (IO)
plugins. Additionally, it provides the command
line configuration interface and a TCP/IP based
configuration interface. Several IO plugins ex-
ist: For real-time signal processing, commonly
the “MHAIOJack” plugin is used, which pro-
vides an interface to the Jack Audio Connec-
tion Kit (JACK) [Davis, 2003]. Other IO plu-
gins provide audio file access or TCP/IP-based
processing.
openMHA plugins provide the audio signal

processing capabilities and audio signal han-
dling. Typically, one openMHA plugin imple-
ments one specific algorithm. The complete
virtual hearing aid signal processing can be
achieved by a combination of several openMHA
plugins.
The openMHA toolbox library “libMHATool-

box” provides reusable data structures and sig-
nal processing classes. Examples are class tem-
plates for the implementation of openMHA plu-
gins, and container classes for audio data. Fur-
thermore, several filter classes in temporal or
spectral domain, filter banks, and hearing aid
specific classes are provided in this library.

3 openMHA Platform Services and
Conventions

The openMHA platform offers some services
and conventions to algorithms implemented in
plugins, that make it especially well suited to
develop hearing aid algorithms, while still sup-
porting general-purpose signal processing.

3.1 Audio Signal Domains

As in most other plugin hosts, the audio signal
in the openMHA is processed in audio chunks.
However, plugins are not restricted to propa-
gate audio signal as blocks of audio samples in
the time domain – another option is to propa-
gate the audio signal in the short time Fourier
transform (STFT) domain, i.e. as spectra of
blocks of audio signal, so that not every plugin
has to perform its own STFT analysis and syn-
thesis. Since STFT analysis and re-synthesis of
acceptable audio quality always introduces an

algorithmic delay, sharing STFT data is a ne-
cessity for a hearing aid signal processing plat-
form, because the overall delay of the complete
processing has to be as short as possible.
Similar to some other platforms, the

openMHA allows also arbitrary data to be ex-
changed between plugins through a mechanism
called “algorithm communication variables” or
short “AC vars”. This mechanism is commonly
used to share data such as filter coefficients or
filter states.

3.2 Real-Time Safe Complex
Configuration Changes

Hearing aid algorithms in the openMHA can ex-
port configuration settings that may be changed
by the user at run time. To ensure real-time safe
signal processing, the audio processing will nor-
mally be done in a signal processing thread with
real-time priority, while user interaction with
configuration parameters would be performed
in a configuration thread with normal priority,
so that the audio processing does not get in-
terrupted by configuration tasks. Two types of
problems may occur when the user is changing
parameters in such a setup:

1. The change of a simple parameter exposed
to the user may cause an involved recalcu-
lation of internal runtime parameters that
the algorithm actually uses in processing.
The duration required to perform this re-
calculation may be a significant portion of
(or take even longer than) the time avail-
able to process one block of audio signal.
In hearing aid usage, it is not acceptable to
halt audio processing for the duration that
the recalculation may require.

2. If the user needs to change multiple param-
eters to reach a desired configuration state
of an algorithm from the original configu-
ration state, then it may not be acceptable
that processing is performed while some of
the parameters have already been changed
while others still retain their original val-
ues. It is also not acceptable to interrupt
signal processing until all pending configu-
ration changes have been performed.

The openMHA provides a mechanism in its
toolbox library to enable real-time safe configu-
ration changes in openMHA plugins: Basically,
existing runtime configurations are used in the
processing thread until the work of creating an

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 37

updated runtime configuration has been com-
pleted in the configuration thread. In hear-
ing aids, it is more acceptable to continue to
use an outdated configuration for a few more
milliseconds than blocking all processing. The
openMHA toolbox library provides an easy-to-
use mechanism to integrate real-time safe run-
time configuration updates into every plugin.

3.3 Plugins can Themselves Host Other
Plugins

An openMHA plugin can itself act as a plugin
host. This allows to combine analysis and re-
synthesis methods in a single plugin. We call
plugins that can themselves load other plugins
“bridge plugins” in the openMHA. When such a
bridge plugin is then called by the openMHA to
process one block of signal, it will first perform
its analysis, then invoke (as a function call) the
signal processing in the loaded plugin to process
the block of signal in the analysis domain, wait
to receive a processed block of signal in the anal-
ysis domain back from the loaded plugin when
the signal processing function call to that plu-
gin returns, then perform the re-synthesis trans-
form, and finally return the block of processed
signal in the original domain back to the caller
of the bridge plugin.

3.4 Central Calibration

The purpose of hearing aid signal processing is
to enhance the sound for hearing impaired lis-
teners. Hearing impairment generally means
that people suffering from it have increased
hearing thresholds, i.e. soft sounds that are au-
dible for normal hearing listeners may be imper-
ceptible for hearing impaired listeners. To pro-
vide accurate signal enhancement for hearing
impaired people, hearing aid signal processing
algorithms have to be able to determine the ab-
solute physical sound pressure level correspond-
ing to a digital signal given to any openMHA
plugin for processing. Inside the openMHA,
we achieve this with the following convention:
The single-precision floating point time-domain
sound signal samples, that are processed inside
the openMHA plugins in blocks of short du-
rations, have the physical pressure unit Pascal
(1Pa = 1N/m2). With this convention in place,
all plugins can determine the absolute physi-
cal sound pressure level from the sound sam-
ples that they process. A derived convention is
employed in the spectral domain for STFT sig-
nals. Due to the dependency of the calibration
on the hardware used, it is the responsibility of

the user of the openMHA to perform calibration
measurements and adapt the openMHA settings
to make sure that this calibration convention
is met. We provide the plugin transducers (cf.
section 4.1) which can be configured to perform
the necessary signal adjustments in most situa-
tions.

4 February 2017 Pre-Release

In February 2017, HörTech and Universität
Oldenburg published a pre-release of the
openMHA on GitHub under an open-source li-
cense (AGPL3). This pre-release contains the
openMHA command line application, the tool-
box library “libMHAToolbox”, an initial set
of openMHA plugins and openMHA sound in-
put/output (IO) libraries, and example configu-
rations. The initial set of plugins and sound IO
libraries was selected so that a basic research
hearing aid configuration can be realized with
the contained plugins, and users could process
both, live sounds via JACK as well as sound
from and to files. The basic hearing aid algo-
rithms present in the pre-release include

• an adaptive differential microphone al-
gorithm that suppresses interfering noise
from the rear hemisphere (cf. section 4.3),

• a binaural coherence filter that provides
feedback suppression and dereverberation
(cf. section 4.5), and

• a multi-band dynamic range compression
algorithm that restores audibility of sounds
for the hearing impaired user (cf. section
4.7).

Apart from the plugins that implement just
these algorithms, additional supporting plug-
ins are contained in the pre-release that are re-
quired to form a complete hearing aid imple-
mentation. The contained plugins are briefly
described in the following subsections.
For real-time hearing aid processing, an

input-output delay below 10ms is required.
This ensures that

• the hearing-impaired user is not confused
by asynchrony between lip movements of
a conversation partner and the perceived
sound,

• no echo-effects are audible if the direct
sound can also be perceived by the hear-
ing aid user, and

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 38

• fewer frequencies are available for possibly
annoying acoustic feedback loops [Grimm
et al., 2009a].

The example configuration that combines all
three example algorithms mentioned here shows
an algorithmic delay of 4.4ms. On top of this al-
gorithmic delay, input and output of the sound
through a sound card causes additional delay in
the range of two to three block durations de-
pending on the hardware in use. The example
configuration uses a block size of 64 samples at
44100Hz sampling rate. We have found, that
e.g. with the RME Multiface II sound card and
the snd-hdsp alsa driver used by JACK, this will
add 4.4ms delay between acoustic input and
output on a Linux system with a low-latency
kernel and real-time priorities set up for JACK
and the alsa sound driver.

This results in an overall delay of 8.8ms of
the example configuration containing the plu-
gins described in the following in the order of
their processing.

4.1 The transducers Plugin

A device-dependent calibration is required for
plugins to be able to deduce the physical sig-
nal level that is present at the hearing aid in-
put. When connecting a microphone to a sound
card and using that sound card to feed sound
samples to the openMHA, these sound samples
do not automatically follow the openMHA level
convention outlined in section 3.4. The same
is true when using sound files instead of sound
cards for input and output. Different micro-
phones have different sensitivities. Sound cards
have adjustable amplification settings. Sound
files may have been normalized before they have
been saved to disk. To be able to implement
the openMHA level convention, i.e., that the
numeric value of time-domain sound samples in
the openMHA should reflect their sound pres-
sure amplitude in Pascal, we need to be able
to adjust for arbitrary physical level to digital
level mappings in the openMHA. This is done
with the help of the plugin transducers, which
is the only plugin that must not rely on this
convention, because it is the one plugin that
has to make sure that all other plugins can rely
on this convention. For this reason, transduc-
ers is usually loaded as the first plugin into
the openMHA, and will itself (i.e. as a bridge
plugin, cf. section 3.3) load another openMHA
plugin into the openMHA process. This other
plugin receives the calibrated input signal from

transducers, and it sends its processed but still
calibrated output signal back to the transducers
plugin to adjust for the physical outputs. trans-
ducers provides filters and gain adjustments to
ensure calibration of inputs and outputs. Typi-
cal output calibration values are in the order of
110 dB SPL of a full-scale signal.

4.2 The mhachain Plugin

Anmhachain plugin can itself load several other
plugins in a configurable order, where each plu-
gin processes the output signal of the previous
plugin.

4.3 The Adaptive Differential
Microphone (adm) Plugin

Reduced audibility of soft sounds is not the only
problem that hearing impaired listeners face
when communicating. Another commonly ex-
perienced problem is a reduced intelligibility of
speech in noisy environments, even if the speech
is loud enough to be perceived. Hearing aids
therefore regularly employ signal processing al-
gorithms to enhance the signal-to-noise ratio
of speech in noisy environments. In this con-
text assumptions about target and noise sources
play an important role as well as robustness
and generalization capabilities of the method
used. Adaptive differential microphones (ADM,
[Elko and Pong, 1995]) aim at the preserva-
tion of a target signal while suppressing back-
ground noise. For this purpose, two general
assumptions are made: the target is assumed
to be present in the frontal hemisphere of a
listener, while noise occurs in the rear hemi-
sphere. ADMs work for pairs of omnidirec-
tional microphones separated by a small dis-
tance, and combine a two-channel input to a
single-channel output signal by adding up de-
layed and weighted versions of the input as
shown in Figure 2. In a binaural setting two
independent, bilateral ADMs are realized, each
using a two-microphone pair located in the a
hearing aid device on one ear.

4.4 The overlapadd Plugin

overlapadd is one of the openMHA plugins that
perform conversion between time domain and
spectral domain as a service for algorithms that
process a series of short time Fourier transform
(STFT) signals. Thereby, not every openMHA
plugin that processes spectral signal has to per-
form its own spectral analysis.
overlapadd is a bridge plugin (cf. sec-

tion 3.3) and performs both, the forward and

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 39

front

back

out

-

-

-

weight

T

T

Figure 2: Adaptive differential microphone sig-
nal flowchart. The input of the front and back
microphone is combined to a single-channel out-
put after applying a delay T and a weighting.

the backward transform, and can load another
openMHA plugin which analyses and modi-
fies the signal while in the spectral domain.
The plugin performs the standard process of
collecting the input signal, windowing, zero-
padding, fast Fourier transform, inverse fast
Fourier transform, additional windowing, and
overlap-add time signal output. It can be used
in standard overlap-add (OLA) and weighted
overlap-add (WOLA) contexts.

4.5 The Binaural coherence Filter
Plugin

An important issue in hearing aid processing
is the reduction of feedback that can occur be-
tween the hearing aid receivers (outputs) and
the closely located inputs (microphones). At
high output levels a sound loop can emerge,
causing annoying, self-sustaining beep tones.
Binaural coherence filtering, i.e., coherence-

based gain control is applied to reduce this ef-
fect and enable higher gain levels of the hearing
device [Grimm et al., 2009b].
Figure 3 shows that the binaural coherence is

measured between the left and the right input
signals to the hearing aids and used to derive
frequency-dependent gains.
Coherence filtering also contributes to noise

and reverberation reduction, as diffuse, inco-
herent background sounds are also reduced.
A combination the binaural coherence filtering
with preceding bilateral ADMs was shown to
be beneficial, i.e., increased speech intelligibility
with a binaural hearing aid setup [Baumgärtel
et al., 2015].

4.6 The fftfilterbank Plugin

In the hearing impaired, the hearing loss gener-
ally varies with frequency. To restore audibility
in hearing impaired listeners with amplification
and compression in hearing aid signal process-
ing, it is therefore common practice to amplify

Lin
STFT

Rin
coherence gain iSTFT

Lout

Rout

Figure 3: Coherence filter signal flowchart. Bin-
aural coherence-based gain control is applied to
the left and the right input channel in different
frequency bands in the STFT domain.

filter
 bank

gain
 control resynthesis out

level
 meter

in

Figure 4: Dynamic compression signal
flowchart. The input is split into frequency
bands by a filter-bank. Before re-synthesis, an
input-level dependent gain rule is applied.

and compress the signal differently in different
frequency bands, and let the time-varying input
level in the different frequency bands control
the gain selection. The fftfilterbank plugin re-
ceives broadband spectra for each audio channel
and divides the incoming spectra into multiple
narrower frequency bands for processing by the
following openMHA algorithms. The fftfilter-
bank provides flexibility for filter-bank design.
The output frequency bands may overlap or not,
with variable degrees of overlap, with customiz-
able filter shapes and different frequency scales
to specify the edge or center frequencies of the
filters.

4.7 Hearing Loss Compensation (dc)

The dc plugin applies Multi-band dynamic
range compression [Grimm et al., 2015] to the
signal. This operation serves two important
aspects in a hearing aid: The hearing loss is
compensated by defining gain rules between in-
put and output level. Specific gain rules are
also used to compensate recruitment effects that
often comes along with a hearing loss, i.e., a
decreased range between the percept of a soft
sound and the loudest sound with a still com-
fortable level. To compensate for this effect, soft
input sounds are usually amplified with higher
gains than loud sounds. The dc plugin allows to
specify a gain-matrix with different gains for dif-
ferent frequencies and input sound levels. Input
sound levels in hearing aid frequency bands are
commonly measured with attack-release level
filters, the time constants of which can be freely
configured in the dc plugin. Figure 4 shows the

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 40

signal flow for dynamic compression with the
dc plugin. The dc plugin also allows to config-
ure binaural and inter-frequency interactions of
gain derivation.

4.8 The combinechannels Plugin

Because the fftfilterbank splits broadband sig-
nals into frequency bands for processing by the
dc plugin, these frequency bands have to be re-
combined to broadband channels again, after
dc has processed them. This is done in the
combinechannels plugin. Of course, the fftfil-
terbank and combinechannels plugins could be
combined into a single bridge plugin (cf. sec-
tion 3.3). This would generally be a better
implementation choice. It is not done here to
showcase the flexibility of the openMHA plat-
form: It is also possible to have analysis and re-
synthesis of some transform as separate plugins,
and to propagate the signal from one plugin to
the next inside a single mhachain plugin while
the domain changes from one plugin to the next
(here: few broadband channels vs many narrow-
band channels).

5 Software

openMHA is a command line application with
no graphical user interface (GUI) of its own.
openMHA can be configured with command line
parameters, configuration files, interactively
over a network connection, or by a combina-
tion of all three methods. The same text-based
configuration language is used in all three meth-
ods. Special-purpose GUIs can be produced to
control the openMHA over the network connec-
tion. Such GUIs can be produced in any pro-
gramming language or framework that is able to
connect to the openMHA over a TCP network
connection. Some special-purpose GUIs exist
for the closed-source MHA that also work with
the openMHA, but are not yet part of the first
open-source pre-release. GUIs will be added in
later releases of the openMHA.

5.1 Configuration Interface

The openMHA application itself and also its
plugins are controlled through a simple, text-
based configuration language. The language
allows hierarchical configuration similar to the
concept of Octave and Matlab structures. The
configuration language enables variable assign-
ments, queries, and loading and saving of con-
figuration files. Variables of different types (in-
tegers, floating point and complex numbers,

strings) and dimensions (scalars, vectors, ma-
trices) are supported. For more details, please
refer to [Grimm et al., 2006].

5.2 Plugin Development

New plugins can be developed for the openMHA
by implementing a C++ class derived from a
generic base class, implementing the methods
and compiling it to a shared object. Together
with other helper classes provided by the MHA-
Toolbox library, out-of-the box support for ex-
porting variables to the configuration interface
(cf. section 5.1) and for thread safe configura-
tion updates (cf. section 3.2) is available.
Simple plugins will usually output the signal

in the same domain (spectrum or waveform) as
the input domain. It is also possible to im-
plement domain transformations (from the time
domain to spectrum or vice versa) inside a plu-
gin, as well as change the number of audio chan-
nels, and even the number of audio samples
per block and the sampling rate (e.g. for re-
sampling).
A detailed manual for plugin development

and implementation will be provided with a
near-future release.

6 Conclusions

The openMHA provides the means for sustain-
able research on and development of hearing aid
processing algorithms and assistive hearing sys-
tems. The software is further developed in the
project ”Open community platform for hearing
aid algorithm research”, additionally, updates
based on the feedback of the research commu-
nity will be conducted. Future work will ex-
tend the openMHA in several directions: The
set of reference algorithms will be expanded and
experimental algorithms will be included. Ad-
ditional hardware and operation systems will
be included, i.e., real-time runtime support for
Beaglebone Black ARM and similar platforms,
as well as support for Windows operations sys-
tems. Increased usability on different user levels
is achieved by the preparation of a GUI for the
pure application of the openMHA, e.g., in the
context of audiological measurements, availabil-
ity of reference manuals for the configuration as
well as the implementation of plugins for real-
ization and implementation of own algorithms
and methods and their evaluation.
The openMHA is intended to serve as a plat-

form for extensive research and evaluations by
the community. A pre-release of the software in

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 41

its current version including example configura-
tion files as described here can be downloaded
via http://www.openmha.org.

7 Acknowledgments

The project ”Open community platform for
hearing aid algorithm research” is funded by
the National Institutes of Health (NIH Grant
1R01DC015429-01).

References

Regina M. Baumgärtel, Martin Krawczyk-
Becker, Daniel Marquardt, Christoph Völker,
Hongmei Hu, Tobias Herzke, Graham Cole-
man, Kamil Adiloglu, Stephan M. A.
Ernst, Timo Gerkmann, Simon Doclo, Birger
Kollmeier, Volker Hohmann, and Math-
ias Dietz. 2015. Comparing Binaural Pre-
processing Strategies I: Instrumental Eval-
uation. Trends in Hearing, 19:article No.
2331216515617916.

Perry R Cook and Gary P Scavone. 1999. The
synthesis toolkit (stk). In ICMC.

Paul Davis. 2003. Jack audio connection kit.
http://jackaudio.org/.

John W. Eaton, David Bateman, Søren
Hauberg, and Rik Wehbring. 2015. GNU
Octave version 4.0.0 manual: a high-level
interactive language for numerical com-
putations. http://www.gnu.org/software/
octave/doc/interpreter.

G. W. Elko and Anh-Tho Nguyen Pong. 1995.
A Simple Adaptive First-order Differential
Microphone. In Proceedings of 1995 Work-
shop on Applications of Signal Processing to
Audio and Accoustics, pages 169–172.

Giso Grimm, Tobias Herzke, Daniel Berg,
and Volker Hohmann. 2006. The Master
Hearing Aid: a PC-based Platform for Al-
gorithm Development and Evaluation. Acta
acustica united with Acustica, 92:618–628.

Giso Grimm, Tobias Herzke, and Volker
Hohmann. 2009a. Application of Linux Au-
dio in Hearing Aid Research. In Linux Audio
Conference 2009.

Giso Grimm, Volker Hohmann, and Birger
Kollmeier. 2009b. Increase and Subjective
Evaluation of Feedback Stability in Hear-
ing Aids by a Binaural Coherence-based
Noise Reduction Scheme. IEEE Transactions
on Audio, Speech, and Language Processing,
17(7):1408–1419.

Giso Grimm, Tobias Herzke, Stephan Ewert,
and Volker Hohmann. 2015. Implementation
and Evaluation of an Experimental Hearing
Aid Dynamic Range Compressor Gain Pre-
scription. In DAGA 2015, pages 996–999.

HörTech gGmbH and Universität Oldenburg.
2017. openMHA web site on GitHub. http:
//www.openmha.org/.

Eric Jones, Travis Oliphant, Pearu Peterson,
et al. 2001–. SciPy: Open source scientific
tools for Python. http://www.scipy.org/.

James McCartney. 2002. Rethinking the com-
puter music language: Supercollider. Com-
puter Music Journal, 26(4):61–68.

Yann Orlarey, Dominique Fober, and
Stéphane Letz. 2009. Faust: an efficient
functional approach to dsp programming.
New Computational Paradigms for Computer
Music, 290.

Miller Puckette. 1996–. Pure data. https:
//puredata.info/.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 42

http://www.openmha.org
http://www.gnu.org/software/octave/doc/interpreter
http://www.gnu.org/software/octave/doc/interpreter
http://www.openmha.org/
http://www.openmha.org/
http://www.scipy.org/
https://puredata.info/
https://puredata.info/

Towards dynamic and animated music notation using INScore

Dominique Fober, Yann Orlarey and Stéphane Letz
GRAME - Centre national de création musicale

11 cours de Verdun Gensoul
69002 Lyon
France,

{fober, orlarey, letz}@grame.fr

Abstract

INScore is an environment for the design of aug-
mented interactive music scores opened to conven-
tional and non-conventional use of the music nota-
tion. The system has been presented at LAC 2012
and has significantly evolved since, with improve-
ments turned to dynamic and animated notation.
This paper presents the latest features and notably
the dynamic time model, the events system, the
scripting language, the symbolic scores composition
engine, the network and Web extensions, the inter-
action processes representation system and the set
of sensor objects.

Keywords

INScore, music score, dynamic score, interaction.

1 Introduction

Contemporary music creation poses numerous
challenges to the music notation. Spatialized
music, new instruments, gesture based inter-
actions, real-time and interactive scores, are
among the new domains that are now com-
monly explored by the artists. Common music
notation doesn’t cover the needs of these new
musical forms and numerous research and ap-
proaches have recently emerged, testifying to
the maturity of the music notation domain, in
the light of computer tools for music notation
and representation. Issues like writing spatial-
ized music [Ellberger et al., 2015], addressing
new instruments [Mays and Faber, 2014] or new
interfaces [Enström et al., 2015] (to cite just a
few), are now subject of active research and pro-
posals.
Interactive music and real-time scores are also

representative of an expanding domain in the
music creation field. The advent of the digi-
tal score and the maturation of the computer
tools for music notation and representation con-
stitute the basement for the development of this
musical form, which is often grounded on non-
traditional music representation [Smith, 2015]

[Hope et al., 2015] but may also use the com-
mon music notation [Hoadley, 2012; Hoadley,
2014].
In order to address the notation challenges

mentioned above, INScore [Fober et al., 2010]
has been designed as an environment opened
to non-conventional music representation (al-
though it supports symbolic notation), and
turned to real-time and interactive use [Fober et
al., 2013]. It is clearly focused on music repre-
sentation only and in this way, differs from tools
integrated into programming environments like
Bach [Agostini and Ghisi, 2012] or MaxScore
[Didkovsky and Hajdu, 2008].
INScore has been already presented at LAC

2012 [Fober et al., 2012a]. It has significantly
evolved since and this paper introduces the
set of issues that have been more recently ad-
dressed. After a brief recall of the system and
of the programming environment, we’ll present
the scripting language extensions and the sym-
bolic scores composition engine that provides
high level operations to describe real-time and
interactive symbolic scores composition. Next
we’ll describe how interaction processes repre-
sentations can be integrated into the music score
and how remote access is supported using the
network and/or Web extensions. Tablet and
smartphone support have led to integrate ges-
tural interaction with a set of sensor objects
that will be presented. Finally, the time model,
recently extended, will be described.

2 The INScore environment

INScore is an environment to design interactive
augmented music scores. It extends the mu-
sic representation to arbitrary graphic objects
(symbolic notation but also images, text, vecto-
rial graphics, video, signals representation) and
provides an homogeneous approach to manipu-
late the score components both in the graphic
and time spaces.
It supports time synchronization in the

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 43

graphic space, which refers to the graphic rep-
resentation of the temporal relations between
components of a score - via a synchronization
mechanism and using mappings that express re-
lations between time and graphic space segmen-
tations (Fig. 1).

Figure 1: A graphic score (Mark Applebaum’s
graphic score Metaphysics of Notation) is
synchronized to a symbolic score. The picture
in the middle is the result of the
synchronization. The vertical lines express the
graphic to graphic relationship, that have
been computed by composing the objects
common relations with the time space.

INScore has been primarily designed to be
controlled via OSC1 messages. The format of
the messages consists in an OSC address fol-
lowed by a message string and 0 to n parameters
(Fig. 2).
OSCMessage

OSCAddress message parameters�

�

�

�

Figure 2: INScore messages general format.

Compared to object oriented programming,
the address may be viewed as an object pointer,
the message string as a method name and the
parameters as the method parameters. For ex-
ample, the message:

/ITL/scene/score color 255 128 40 150

may be viewed as the following method call:
ITL[scene[score]]->color(255 128 40 150)

The system provides a set of messages for
the graphic space control (x, y, color, space,

etc.), for the time space control (date,

duration, etc.), and to manage the environ-
ment. It includes two special messages:

1http://opensoundcontrol.org/

• the set message that operates like a con-
structor and that takes the object type as
parameter, followed by type specific param-
eters (Fig. 3).

• the get message provided to query the sys-
tem state (Fig. 4).

/ITL/scene/obj set txt "Hello world!";

Figure 3: A message that creates a textual
object, which type is txt, with a text as
specific data.

/ITL/scene/obj get;

-> /ITL/scene/obj set txt "Hello

world!";

/ITL/scene/obj get x y;

-> /ITL/scene/obj x 0;

-> /ITL/scene/obj y 0.5;

Figure 4: Querying an object with a get message
gives messages on output (prefixed with ->).
These messages can be used to restore the
corresponding object state.

The address space is dynamic and not limited
in depth. It is hierarchically organized, the first
level /ITL is used to address the application,
the second one /ITL/scene to address the score
and the next ones to address the components
of a score (note that scene is a default name
that can be user defined). Arbitrary hierarchy
of objects is supported.

3 The scripting language

The OSC messages described above have been
turned into a textual version to constitue the
INScore scripting language. This language has
been rapidly extended to support :

• variables, that may be used to share pa-
rameters between messages (Fig. 5).

• message based variables and/or parameters
that consists in querying an object to re-
trieve one of it’s attributes value (Fig. 6).

• an extended OSC addressing scheme that
allows to send OSC messages to an exter-
nal application for initialization of control
purposes (Fig. 7).

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 44

http://opensoundcontrol.org/

• JavaScript sections that can be evaluated
at parsing and/or run time. A JavaScript
call is expected to produce INScore mes-
sages as output (Fig. 8).

• mathematical expressions (+ - / *,

conditionals, etc.) that can be used for
arguments computation (Fig. 9).

• symbolic scores composition expressions
that are described in section 4.

greylevel = 140;

color = $greylevel $greylevel $greylevel;

/ITL/scene/obj1 color $color;

/ITL/scene/obj2 color $color;

Figure 5: Variables may be used to share values
between messages.

ox = $(/ITL/scene/obj get x);

/ITL/scene/obj2 x $(/ITL/scene/obj get x);

Figure 6: The output of get messages can be
used by variables or as another message
parameter.

/ITL/scene/obj set txt "Hello world!";

localhost:8000/start;

Figure 7: This script initialises a textual object
and sends the /start message to an external
application listening on UDP port 8000.

4 Symbolic scores composition

Rendering of symbolic music notation makes use
of the Guido engine [Daudin et al., 2009]. Thus
the primary music score description format is
the Guido Music Notation format [Hoos et al.,
1998] [GMN]. The MusicXML format [Good,
2001] is also supported via conversion to the
GMN format.
The Guido engine provides a set of operators

for scores level composition [Fober et al., 2012b].
These operators consistently take 2 scores as ar-
gument to produce a new score as output. They
allow to put scores in sequence (seq), in par-
allel (par), to cut a score in the time dimen-
sion (head, tail), in the polyphonic dimen-
sion (top, bottom), to transpose (transpose),
to stretch (duration) a score and to apply the

<?javascript

function randpos(address) {

var x = (Math.random() * 2) - 1;

return address + " x " + x + ";";

}

?>

/ITL/scene/javascript run

’randpos("/ITL/scene/obj")’;

Figure 8: The JavaScript section defines a
randpos function that computes an x
message with a random value, addressed to
the object given as parameter. This function
may be next called at initialization or at any
time using the static JavaScript node
embedded into each score.

/ITL/scene/o x ($shift ? $x + 0.5 : $x);

Figure 9: A mathematical expression is used to
compute the position of an object depending
on 2 previously defined variables.

rhythm or the pitch of a score to another one
(rhythm, pitch).

The INScore scripting language includes score
expressions, a simple language providing score
composition operations. The novelty of the pro-
posed approach relies on the dynamic aspects of
the operations, as well as on the persistence of
the score expressions. A score may be composed
as an arbitrary graph of score expressions and
equipped with a fine control over the changes
propagation.

4.1 Score expressions

A score expression is defined as an operator fol-
lowed by two scores (Fig. 10). The leading expr

token is present to disambiguate parenthesis in
the context of INScore scripts.

expr (score scoreoperator)

score

score expression:
1

2

Figure 10: Score expressions syntax.

The score arguments may be:

• a literal score description string (GMN or
MusicXML formats),

• a file (GMN or MusicXML formats),

• an existing score object,

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 45

• a score expression.

An example is presented in Fig. 11.

expr(par score.gmn (seq "[c]" score))

Figure 11: A score expression that puts a score
file (score.gmn) in parallel with the
sequence of a literal score and an existing
object (score). Note that the leading expr
token can be omitted inside an expression.

4.2 Dynamic score expression trees

The score expressions language is first trans-
formed into an internal tree representation. In a
second step, this representation is evaluated to
produce GMN strings as output, that are finally
passed to the INScore object as specific data.
Basically, the tree is reduced using a depth

first post-order traversal and the result is stored
in a cache. However, the score expressions lan-
guage provides a mechanism to make arbitrary
parts of a tree variable using an ampersand (&)
as prefix of an argument, preventing the cor-
responding nodes to be reduced at cache level
(Fig. 12).

expr(par score.gmn (seq "[c]" &score))

Figure 12: A score expression that includes a
reference to a score object. Successive
evaluations of the expression may produce
different results, provided that the score
object has changed.

INScore events system (described in section
8.2) provides a way to automatically trigger the
re-evaluation of an expression when one of it’s
variable parts has changed. These mechanisms
open the door to dynamic scores composition
within the INScore environment. More details
about the score expressions language can be
found in [Lepetit-Aimon et al., 2016].

5 Musical processes representation

INScore includes tools for the representation of
musical processes within the music score. In
the context of interactive music and/or when a
computer is involved in a music performance,
it may provide useful information regarding the
state of the musical processes running on the
computer. This feedback can notably be used to
guide the interaction choices of the performer.

On INScore side, a process state is viewed as
a signal. Signals are part of a score components
and can be combined into graphic signals to be-
come first order objects of a score. They may
be notably used for the representation of a per-
formance [Fober et al., 2012a].
Regarding musical processes representation,

a signal can be connected to any attribute of an
object (Fig. 13), which makes the signal varia-
tions visible (and thus the process activity) with
the changes of the corresponding attributes.

/ITL/scene/signal/sig size 100;

/ITL/scene/obj set rect 0.5 0.5;

/ITL/scene/img set img ’file.png’;

/ITL/scene/signal connect sig

"obj:scale" "img:rotatez[0,360]";

Figure 13: A signal sig is connected to the
scale attribute of an object and to the
rotatez attribute of an image. Note that for
the latter, the signal values (expected to be
in [-1,1]) are scaled to the interval [0,360].

6 Network and Web dimensions

INScore supports the aggregation of distributed
resources over Internet, as well as the publica-
tion of a score via the HTTP and/or WebSocket
protocols. In addition, a score can also be used
to control a set of remote scores on the local
network using a forwarding mechanism.

6.1 Distributed score components

Most of the components of a score can be de-
fined in a literal way or using a file. All the file
based resources can be specified as a simple file
path, using absolute or relative path, or as an
HTTP url (Fig 14).

/ITL/scene/obj1 set img ’file.png’;

/ITL/scene/obj2 set img

’http://www.adomain.org/file.png’;

Figure 14: File based resources can refer to local
or to remote files.

When using a relative path, an absolute path
is built using the current path of the score, that
may be set to an arbitrary location using the
rootPath attribute of the score (Fig 15).
The current rootpath can also be set to an

arbitrary HTTP url, so that further use of a
relative path will result in an url (Fig. 16).

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 46

/ITL/scene rootPath ’/users/me/inscore’;

/ITL/scene/obj set img ’file.png’;;

Figure 15: The rootPath of a score is equivalent
to the current directory in a shell. With this
example, the system will look for the file at
’/users/me/inscore/file.png’

/ITL/scene rootPath

’http://www.adomain.org’;

/ITL/scene/obj set img ’file.png’;;

Figure 16: The rootPath supports urls. With
this example, the system will look for the file
at ’http://www.adomain.org/file.png’

This mechanism allows to mix local and re-
mote resources in the same music score, but also
to express local and remote scores in a similar
way, just using a rootPath change.

6.2 HTTPd and WebSocket objects

A music score can be published on the Inter-
net using the HTTP or the WebSocket proto-
cols. Specific objects can be embedded in a
score in order to make this score available to
remote clients (Fig. 17).

/ITL/scene/http set httpd 8000;

/ITL/scene/ws set websocket 8100 200;

Figure 17: This example creates an httpd server
listening on the port 8000 and a WebSocket
server listening on the port 8100 with a
maximum notification rate of 200 ms.

The WebSocket server allows bi-directional
communication between the server and the
client. It sends notifications of score changes
each time the graphic appearance of the score
is modified, provided that the notification rate
is lower than the maximum rate set at server
creation time.
The communication scheme between a client

and an INScore Web server relies on a reduced
set of messages. These messages are proto-
col independent and are equally supported over
HTTP or WebSocket :

• get: requests an image of the score.

• version: requests the current version of the
score. The server answers with an integer
value that is increased each time the score
is modified.

• post: intended to send an INScore script to
the server.

• click: intended to allow remote mouse in-
teraction with the score.

More details are available from [Fober et al.,
2015].

6.3 Messages forwarding

Message forwarding is another mechanism pro-
vided to distribute scores over a network. It op-
erates at application and/or score levels when
the forward the message is send to the appli-
cation (/ITL) or to a score (/ITL/scene). The
message takes a list of destination hosts spec-
ified using a host name or an IP number, and
suffixed with a port number. All the OSC mes-
sages may be forwarded, provided they are not
filtered out (Fig. 18). The filtering strategy
is based on OSC adresses and/or on INScore
methods (i.e. messages addressing specific ob-
jects attributes).

/ITL forward 192.168.1.255:7000;

/ITL/filter reject

’/ITL/scene/javascript’;

Figure 18: The application is requested to
forward all messages on INScore port (7000)
to the local network using a broadcast
address. Messages addressed to the
JavaScript engine are filtered out in order to
only forward the result of their evaluation.

7 The sensor objects

INScore runs on the major operating systems
including Android and iOS. Tablet and smart-
phone support have led to integrate gestural in-
teraction with a set of sensor (Table 1).
Sensors can be viewed as objects or as signals.

When created as a signal node, a sensor behaves
like any signal but may provide some additional
features (like calibration). When created as a
score element, a sensor has no graphical appear-
ance but provides specific sensor events and fea-
tures.
All the sensors won’t likely be available on a

given device. In case a sensor is not supported,
an error message is generated at creation re-
quest and the creation process fails.

8 The time model

INScore time model has been recently extended
to support dynamic time. Indeed and with the

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 47

name values
accelerometer x, y, z
ambient light light level

compass azimuth
gyroscope x, y, z

light a level in lux
magnetometer x, y, z

orientation device orientation
proximity a boolean value
rotation x, y, z

tilt x, y

Table 1: The set of sensors and associated values

initial design, the time attributes of an object
are fixed and don’t change unless a time mes-
sage (date, duration) is received, which can
only be emitted from an external application or
using the events mechanism. The latter (de-
fined very early) introduced another notion of
time: the events time, which takes place when
an event occurs. The events system has also
been extended for more flexibility.

8.1 The musical time

Regarding the time domain, any object of a
score has a date and a duration. A new tempo
attribute has been added, which has the effect of
moving the object in the time dimension when
non null, according to the tempo value and the
absolute time flow. Let t0 be the time of the last
tempo change of an object, let v be the tempo
value, the object date dt at a time t is given by
a time function f :

f(t) → dt = dt0 + (t− t0)× v× k, t ≧ t0 (1)

where di is the object date at time ti and k
a constant to convert absolute time in musical
time. In fact, absolute time is expressed in mil-
liseconds and the musical time unit is the whole
note. Therefore, the value of k is 1/1000×60×4.

Each object of a score has an independent
tempo. The tempo value is a signed integer,
which means that an object can move forward
in time but backward as well.
From implementation viewpoint and when its

tempo is not null, an object sends ddate (a rel-
ative displacement in time) to itself at periodic
intervals (Fig. 19).
This design is consistent with the overall sys-

tem design since it is entirely message based. It
is thus compatible with all the INScore mecha-
nisms such as the forwarding system.

/ITL/scene/obj tempo 60

-> /ITL/scene/obj ddate f(ri)

-> /ITL/scene/obj ddate f(ri+1)

-> /ITL/scene/obj ddate f(ri+2)

-> ...

Figure 19: A sequence of messages that activate
the time of an object obj. Messages
prefixed by -> are generated by the object
itself. ri is the value of the absolute time
elapsed between the task i and i− 1.

8.2 The events system

The event-driven approach of time in INScore
preceded the musical time model and has been
presented in [Fober et al., 2013]. The event-
based interaction process relies on messages
that are associated to events and that are sent
when the corresponding event occurs. The gen-
eral format of an interaction message is de-
scribed in Fig. 20.

address watch event messages()

Figure 20: Format of an interaction message: the
watch request installs a messages list
associated to the event event.

Initially, the events typology was limited
to classical user interface events (e.g. mouse
events), extended in the time domain (see Ta-
ble 2).

Graphic domain Time domain
mouseDown timeEnter
mouseUp timeLeave

mouseEnter durEnter
mouseLeave durLeave
mouseMove

Table 2: Main INScore events in the initial
versions.

This typology has been significantly extended
to include:

• touch events (touchBegin, touchEnd,

touchUpdate), available on touch screens
and supporting multi-touch.

• any attribute of an object: modifying an
object attribute may trigger the corre-
sponding event, that carries the name of
the attribute (e.g. x, y date, etc.).

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 48

• an object specific data i.e. defined with a
set message. The event name is newData

and has been introduced for the purpose of
the symbolic score composition system.

• user defined events, that have to comply to
a special naming scheme.

Any event can be triggered using the eventmes-
sage, followed by the event name and event’s de-
pendent parameters. The event message may
be viewed as a function call that generates OSC
messages on output. This approach is particu-
larly consistent for user events that can take an
arbitrary number of parameters, which are next
available to the associated messages under the
form of variables named $1...$n (Fig. 21).

/ITL/scene/obj watch MYEVENT (

/ITL/scene/t1 set txt $1,

/ITL/scene/t2 set txt $2

);

/ITL/scene/obj event MYEVENT

"This text is for t1"

"This one is for t2";

Figure 21: Definition of a user event named
MYEVENT that expects 2 arguments referenced
as $1 and $2 in the body of the definition.
This event is next triggered with 2 different
strings as arguments.

The time dimension of the events system al-
lows to put functions in the time space un-
der the form of events that trigger messages
that can modify the score state and/or be ad-
dressed to external applications using the ex-
tended OSC addressing scheme (Fig. 22).

Combined with the dynamic musical time,
this events system allows to describe au-
tonomous animated score. The example in Fig.
23 shows how to describe a cursor that moves
forward and backward over a score by watch-
ing the time intervals that precedes and follows
a symbolic score and by inverting the tempo
value.

9 Conclusion

INScore2 is an ongoing open source project that
crystallizes a significant amount of research ad-
dressing the problematics of the music nota-
tion and representation in regard of the con-
temporary music creation. It is used in artistic

2http://inscore.sf.net)

t

d1 d2 d3 d4 d5 d6

Events

/ITL/scene/obj watch

e1 e2 e3 e4 e5 e6

/ITL/scene/obj date d1

Figure 22: Exemple of events placed in the time
space. These events are associated to time
intervals (timeEnter and timeLeave) and
are triggered when entering (in red) of
leaving (in blue) these intervals. The last
event (e6) emits a date message that
creates a loop by putting the object back at
the beginning of the first interval.

first clear the scene

/ITL/scene/* del;

add a simple symbolic score

/ITL/scene/score set gmn ’[c d e f g a h

c2]’;

add a cursor synchronized to the score

/ITL/scene/cursor set ellipse 0.1 0.1;

/ITL/scene/cursor color 0 0 250;

/ITL/scene/sync cursor score syncTop;

watch different time zones

/ITL/scene/cursor watch timeEnter 2 3

(/ITL/scene/cursor tempo -60);

/ITL/scene/cursor watch timeEnter -1 0

(/ITL/scene/cursor tempo 60);

and finally start the cursor time

/ITL/scene/cursor tempo 60;

Figure 23: A cursor that moves forward and
backward over a symbolic score.

projects and many of the concrete experiences
raised new issues that are reflected into some
of the system extensions. The domain is quite
recent and there are still a lot of open questions
that we plan to address in future work and in
particular:

• turning the scripting language into a real
programming language would provide a
more powerful approach to music score de-
scription. The embedded JavaScript en-

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 49

http://inscore.sf.net

gine may already be used for an algorith-
mic description of a score, but switching
from one environment (INScore script) to
another one (JavaScript) proved to be a bit
tedious.

• extending the score components to give a
time dimension to any of their attributes
could open a set of new possibilities, includ-
ing arbitrary representations of the passage
of time.

Finally, migrating the INScore native environ-
ment to the Web is part of the current plans
and should also open new perspectives, notably
due to the intrinsic connectivity of Web appli-
cations.

References

Andrea Agostini and Daniele Ghisi. 2012.
Bach: An environment for computer-aided
composition in max. In ICMA, editor, Pro-
ceedings of International Computer Music
Conference, pages 373–378.

C. Daudin, Dominique Fober, Stephane Letz,
and Yann Orlarey. 2009. The guido engine – a
toolbox for music scores rendering. In LAC,
editor, Proceedings of Linux Audio Confer-
ence 2009, pages 105–111.

Nick Didkovsky and Georg Hajdu. 2008.
Maxscore: Music notation in max/msp. In
ICMA, editor, Proceedings of International
Computer Music Conference.

Emile Ellberger, Germán Toro-Perez, Jo-
hannes Schuett, Linda Cavaliero, and Gior-
gio Zoia. 2015. A paradigm for scor-
ing spatialization notation. In Marc Bat-
tier, Jean Bresson, Pierre Couprie, Cécile
Davy-Rigaux, Dominique Fober, Yann Ges-
lin, Hugues Genevois, François Picard, and
Alice Tacaille, editors, Proceedings of the
First International Conference on Technolo-
gies for Music Notation and Representation
- TENOR2015, pages 98–102, Paris, France.
Institut de Recherche en Musicologie.

Warren Enström, Josh Dennis, Brian Lynch,
and Kevin Schlei. 2015. Musical notation
for multi-touch interfaces. In Edgar Berdahl
and Jesse Allison, editors, Proceedings of the
International Conference on New Interfaces
for Musical Expression, pages 83–86, Baton
Rouge, Louisiana, USA, May 31 – June 3.
Louisiana State University.

D. Fober, C. Daudin, Y. Orlarey, and S. Letz.
2010. Interlude - a framework for augmented
music scores. In Proceedings of the Sound
and Music Computing conference - SMC’10,
pages 233–240.

Dominique Fober, Yann Orlarey, and
Stephane Letz. 2012a. Inscore – an environ-
ment for the design of live music scores. In
Proceedings of the Linux Audio Conference –
LAC 2012, pages 47–54.

Dominique Fober, Yann Orlarey, and
Stéphane Letz. 2012b. Scores level compo-
sition based on the guido music notation.
In ICMA, editor, Proceedings of the Inter-
national Computer Music Conference, pages
383–386.

Dominique Fober, Stéphane Letz, Yann Or-
larey, and Frederic Bevilacqua. 2013. Pro-
gramming interactive music scores with in-
score. In Proceedings of the Sound and Music
Computing conference – SMC’13, pages 185–
190.

Dominique Fober, Guillaume Gouilloux,
Yann Orlarey, and Stéphane Letz. 2015. Dis-
tributing music scores to mobile platforms
and to the internet using inscore. In Proceed-
ings of the Sound and Music Computing con-
ference – SMC’15, pages 229–233.

M. Good. 2001. MusicXML for Notation and
Analysis. In W. B. Hewlett and E. Selfridge-
Field, editors, The Virtual Score, pages 113–
124. MIT Press.

Richard Hoadley. 2012. Calder’s violin: Real-
time notation and performance through musi-
cally expressive algorithms. In ICMA, editor,
Proceedings of International Computer Music
Conference, pages 188–193.

Richard Hoadley. 2014. December variation
(on a theme by earle brown). In Proceedings
of the ICMC/SMC 2014, pages 115–120.

H. Hoos, K. Hamel, K. Renz, and J. Kilian.
1998. The GUIDOMusic Notation Format - a
Novel Approach for Adequately Representing
Score-level Music. In Proceedings of the Inter-
national Computer Music Conference, pages
451–454. ICMA.

Cat Hope, Lindsay Vickery, Aaron Wy-
att, and Stuart James. 2015. The deci-
bel scoreplayer - a digital tool for read-
ing graphic notation. In Marc Battier, Jean

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 50

Bresson, Pierre Couprie, Cécile Davy-Rigaux,
Dominique Fober, Yann Geslin, Hugues
Genevois, François Picard, and Alice Tacaille,
editors, Proceedings of the First International
Conference on Technologies for Music No-
tation and Representation - TENOR2015,
pages 58–69, Paris, France. Institut de
Recherche en Musicologie.

Gabriel Lepetit-Aimon, Dominique Fober,
Yann Orlarey, and Stéphane Letz. 2016.
Inscore expressions to compose symbolic
scores. In Richard Hoadley, Chris Nash,
and Dominique Fober, editors, Proceedings
of the International Conference on Technolo-
gies for Music Notation and Representation
- TENOR2016, pages 137–143, Cambridge,
UK. Anglia Ruskin University.

Tom Mays and Francis Faber. 2014. A nota-
tion system for the karlax controller. In Pro-
ceedings of the International Conference on
New Interfaces for Musical Expression, pages
553–556, London, United Kingdom, June.
Goldsmiths, University of London.

Ryan Ross Smith. 2015. An atomic approach
to animated music notation. In Marc Bat-
tier, Jean Bresson, Pierre Couprie, Cécile
Davy-Rigaux, Dominique Fober, Yann Ges-
lin, Hugues Genevois, François Picard, and
Alice Tacaille, editors, Proceedings of the
First International Conference on Technolo-
gies for Music Notation and Representation
- TENOR2015, pages 39–47, Paris, France.
Institut de Recherche en Musicologie.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 51

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 52

PlayGuru, a music tutor

Marc Groenewegen
Hogeschool voor de Kunsten Utrecht

Ina Boudier-Bakkerlaan 50
3582 VA Utrecht
The Netherlands

marc.groenewegen@hku.nl

Abstract

PlayGuru is a practice tool being developed for be-
ginning and intermediate musicians. With exercises
that adapt to the musician, the intention is to help
a music student to develop several playing skills and
motivate them to practice in-between classes. Be-
cause all exercise interaction is entirely based on
sound, the author believes PlayGuru is particularly
useful for blind and visually impaired musicians. Re-
search currently focuses on monophonic exercises.
This paper is a report of the current status and ul-
timate goals.

Keywords

Computer-assisted music education, DSP, machine
learning

1 Project objectives

The main reason for writing this paper is to
bring the project to the attention of others so
they can use, improve and benefit from the
ideas, technology and the intended end prod-
uct.
Even though few user experiences can be re-

ported at the time of writing, some intermediate
results and plans for the near future are given
towards the end of this paper.
PlayGuru is a music tutor that operates ex-

clusively in the sound domain. Because the fo-
cus is only on music, the author believes it is a
very useful tool for beginning and intermediate
musicians and particularly useful for blind and
visually impaired musicians.

1.1 Practice motivation

How does an amateur musician find the moti-
vation to pick up their instrument and play?
What motivates children to practice?
These questions probably have a large spec-

trum of answers. Let us focus on two motiva-
tional forces: personal growth and affirmation.
PlayGuru is a set of music exercises based

on an example and response approach. Dialogs
usually start with an example being played and

base the next action upon the response of the
musician. The example and response can also
be played simultaneously, creating a sense of
playing together. Those synchronised exercises
give room to improvisation and exploration.
The way in which PlayGuru aims to keep the

user motivated is based on affirmation when the
exercise is performed according to predefined
objectives.
It will never flag a “wrong note”, as this is

considered highly demotivating. Instead, it re-
sponds by making the exercise slightly easier
when it finds you are struggling with the cur-
rent level, until it gets to a level from which you
can continue growing again.
The most important affirmative motivators

used are:

❼ increasing playing speed

❼ extending the phrase

❼ increasing complexity of the exercise

The current version contains a very basic user
model, which is a starting point for a module
that monitors a user’s achievements and keep
track of their progress, thus supporting their
personal growth.
To perform user tests supporting the re-

search, several exercises are being implemented.
At the time of writing, a versatile sound-domain
guitar tuner with arbitrary tuning is available,
as is an exercise for remembering a melodic
phrase and a riff trainer for practicing licks at
high speed.
Most exercises are developed for the guitar.

A great source of inspiration for guitar practice
is the book by Scott Tennant: [Tennant, 1995]
with a focus on motor skills and automation.
Because all exercises are based on pitch- and

onset-detection in sound signals, adaptation for
other instruments with discrete pitch and a
clear onset should be reasonably straightfor-
ward. For instruments with arbitrary pitch

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 53

ranges and smooth transitions, as well as hu-
man voice, some additional provisions may be
necessary.

1.2 Origin of the project

The PlayGuru project started as part of the au-
thor’s Master’s course. While trying to find
ways to improve the effectiveness of practice
routines for the guitar, some research was done
into existing solutions.

Several systems for computer assisted music
training were found and some have been put to
the test. A shortlist is included at the end. One
thing all the encountered solutions have in com-
mon is that they rely heavily on visual interac-
tion. In many cases this implies written score
or tablature, in other cases a game-like environ-
ment in which the user has to act upon events
happening in a graphic scene.

In several cases the author found the visual
information distracting from the music. Thus
the idea arose for a practice tool exclusively
working with sound.

Shortly after that, the foundation Con-
nect2Music 1 came into view. Connect2Music,
founded in 2013, provides information with re-
spect to music practice by visually impaired mu-
sicians.

According to [Mak, 2015], the facilities for
blind music students in The Netherlands are
limited. Even though the situation is improv-
ing, a practice tool which focuses only on the
music itself would be a much wanted addition.

Thus a project was born: to find ways to im-
prove the learning path for beginning and in-
termediate musicians with music as the key el-
ement and primarily addressing blind and visu-
ally impaired people.

The prototype being developed for perform-
ing this research is called PlayGuru. The envi-
sioned end product aims to help and encourage
a music student to perform certain exercises in-
between music classes and is meant to comple-
ment rather than replace regular classes from a
human teacher.

Through the contacts of Connect2Music with
the community, several blind and visually im-
paired musicians and software developers in The
Netherlands and Belgium expressed their inter-
est in this project and offered help to assess and
assist.

1https://www.connect2music.nl

2 Research

To support the research with experiences of end
users, some application prototypes are being de-
veloped. The adaptive exercises used in these
prototypes will briefly be introduced separately.
This chapters discusses the software and the

chosen methods for interacting with the user.

2.1 Software

The framework and all exercises are currently
implemented in C++11. For audio signal anal-
ysis, the Aubio 2 library is used. Exercises are
composed in real time according to musical rules
or taken from existing material like MIDI files
and guitar tablature.

2.2 Dependencies

Development is done on Linux and Raspbian.
Porting to Apple OSX should be relatively easy
but has not been done yet. The most prominent
dependencies, as in libraries, are jackd, aubio,
fftw3 and portmidi. For generating sound, Flu-
idsynth is used. Stand-alone versions use a
Python script to connect the hardware user-
interface to the exercises.

2.3 Practice companion

When playing along with a song on the radio
you will need to adjust to the music you hear,
as it will not wait for you. Playing with other
musicians has entirely different dynamics. Peo-
ple influence each other, try to synchronise, tune
in and reach a common goal: to make the music
sound nice and feel good about it.
When practicing music with a tool like

PlayGuru it would be nice to have a dialog with
the tool, instead of just obeying to its rules.
This is exactly what makes PlayGuru interact
so nicely. It listens to you and adapts, thus be-
having like a practice companion.
How this is achieved is shown with refer-

ence to the software architecture and indica-
tions which parts have been realised and which
are being developed.

2.4 Architecture

The modular design of PlayGuru is shown in fig-
ure 1, with the Exercise Governor as the module
from which every exercise starts.
The Exercise Governor reads a configuration

file containing information about the user, the
type of exercise, parameters defining the course
of the exercise, various composition settings and
possibly other sources like MIDI files.

2https://aubio.org

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 54

https://www.connect2music.nl
https://aubio.org

Figure 1: PlayGuru’s software architecture

When the exercise starts, the Composer will
generate a MIDI track, or read it from the spec-
ified file. During the exercise, this generating
may take place again, depending on the type of
exercise and the progress of the musician.
The MIDI track is played by the sound mod-

ule, which also captures the sound that comes
back from the musician or their instrument.
The Assessor contains all the sound process-

ing and assessment logic and reports back to the
Exercise Governor, which calls in the help of the
User Model to decide how to interpret the data
and what to do next.

2.5 Playback and analysis

Playback and analysis run in separate threads,
but share the same time base for relating the
output to the input.
Incoming audio is analysed in real time to de-

tect pitch(es) and onsets, which are used to as-
sess the musician’s play in relation to the given
stimuli. Pitch and onset detection are done us-
ing the Aubio library.

2.6 The Exercise Governor

Every exercise type is currently implemented as
a separate program. The Exercise Governor is
essentially a descriptive name for the main pro-
gram of each exercise, which uses those parts
from the other modules that it needs for a cer-
tain exercise. Currently these are compiled and
linked into the program. With these building
blocks it determines the nature of the exercise.
As an example: to let the musician work

on accurate reproduction of a pre-composed
phrase, the Exercise Governor will ask the Com-
poser to read a MIDI file, call the MIDI play
routine from the Sound module, then let the
Assessor assess the user’s response and consult
the User Model, given the Assessor’s data, for
determining the next step.
For a play-along exercise using generated

melodies, the Exercise Governor uses routines

Figure 2: Note onset absolute time difference

from the same modules, but with a different in-
tention. In this case it would let the Composer
create a new phrase when needed, ask the As-
sessor to run a different type of analysis and
perform concurrent scheduling of playback and
analysis.

2.7 The Assessor

PlayGuru’s exercises generally consist of a play-
and evaluation loop. For some exercises, the
evaluation process is run after the playback iter-
ation, while for others they run simultaneously.
Figure 2 shows the measured timing of a mu-

sician playing along with an example melody.
The time of each matched note is compared to
the time when that note was played in the ex-
ample. In this chart we see that the musician
played slightly “before the beat”.
This absolute timing indicates whether the

musician is able to exactly copy the example,
which can be seen clearly for a melody constist-
ing of only equidistant notes.
More interesting however is relative tim-

ing. This indicates whether the musician
keeps the timing structure of the example in-
tact. In this case we calculate the differ-
ences in spacing of the onsets of successive
notes, either numerically or as an indication of
“smaller/equal/larger” and compare the result
to the structure of the example. In figure 3 this
is shown. Here we can see that the musician
started out with confidence and needed more
time to find the last notes of the phrase. The
example consisted of equidistant notes, which
would result in a chart of zeros and is therefore

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 55

Figure 3: Note onset relative time difference

omitted.

2.8 The Composer

The Composer generates musical phrases based
on given rules. The current implementation
uses melodic intervals in a specified range, with
an allowed set of intervals and within a given
scale. The scale is listed as a combination of
tones (T) and semitones (S), as in the examples
in table 1 and can be specified as needed.

T,T,S,T,T,T,S major
T,S,T,T,T,S,T minor
S,S,S,S,S,S,S,S,S,S,S 12-tone

Table 1: Scale examples

2.9 The User Model

At the time of writing, the User Model is partly
implemented.

The part that has been implemented and is
currently tested by end users is the mapping
from analysed properties of the user’s playing
to parameters that are musically meaningful or
significant for the user’s ambitions.
In general this mapping is a linear combina-

tion of those properties. For example, the user’s
melodic accuracy can be expressed as a combi-
nation of hitting the correct notes and the lack
of spurious or unwanted notes.
The weight factors are empirically deter-

mined, as are several parameters in the exer-
cises, such as the number of repetitions before
moving on or the required proficiency for in-
creasing the level of an exercise.

It is here where the assistance of a Machine
Learning algorithm is wanted: to learn which
weight factors and other parameters contribute
to the user’s goals and to optimise these. This
has not been implemented yet and is currently
being studied.

2.10 Melodic similarity

There are several ways to find out the similarity
between the given example and the musician’s
response. In the current research, only the onset
(i.e. start) and pitch of notes are taken into
account. Although timbre, loudness and various
other features are extremely useful, these are
ignored for the time being.
In the exercises where the user is asked to

memorise and copy an example melody, the ac-
complishment of this task is purely based on
hitting the correct notes in the correct order.
The similarity however is also reflected in the
timing. The extent to which the musician keeps
the rhythm of the example intact is a property
that is measured and evaluated.
In the exercises where the musician plays

along with a piece of music, we have much more
freedom in the assessment. In this case, playing
the exact same notes as in the example is not
always necessary. For some exercises it would
suffice to improvise within the scale or play cer-
tain melodic intervals.
In these situations, similarity measures also

allow for more freedom.
A method that is used in an exercise called

“riff trainer”, focused on automation of and cre-
ating variations on a looped phrase, observes
notes in the proximity of example notes and
draws conclusions based on the objectives of the
exercise. This allows for both very strict adher-
ence to the original melody as well as melodic
interval-based variations, depending on the as-
sumed objectives.
Another method compares the Markov chain

of the example with that of the musician’s re-
sponse.
Some inspiration is gained from this book

about melodic similarity: [Walther B. Hewlett,
1998]

3 Personal objectives

Figure 4 shows that an exercise is ‘composed’
and played. The response of the musician is as-
sessed and mapped to temporary skills. Long-
term skills are accumulated in a user model,
which tries to construct an accurate profile of
the musician and their personal objectives.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 56

Figure 4: Machine assisted learning supported
by machine learning

Examples of these objectives are to strive for
faster playing, memorise long melodies or im-
prove timing accuracy. These need to be ex-
pressed as quantifyable properties. Faster play-
ing can be expressed as playing a phrase faster
than before or playing it faster than the given
example, which can be measured.

Likewise, memorising a melody involves the
length of the melody that can accurately be
played at reasonable speed. Obviously, the con-
cepts ‘accurately’ and ‘reasonable’ have to be
quantified.

An indication of accuracy in playing is ob-
tained by measuring the number of spurious
notes, missed notes and timing.

Some approaches for machine learning (ML)
will be investigated. The term “machine learn-
ing” is used here to express that the machine
itself is learning and does not refer to the “ma-
chine assisted learning”, which is the main topic
of this paper. A machine learning algorithm
is thought to be able to achieve the user’s ob-
jectives by adjusting the mapping parameters
that translate measured quantities to short-time
skills and several properties of the exercises.

Depending on the exercise, various factors are
measured, such as matched notes, missed notes,
spurious notes, adherence to the scale, speed
and timing accuracy.

These quantities are mapped to short-term
skills according to table 2.

Apart from these measured data, the exer-
cises also contain configuration parameters that
can be optimised for each user. These are found
in composer settings and the curves used to con-
trol the playing speed and exercise complexity.

Measured quantity Mapped to

timing deltas timing accuracy
missed notes melodic accuracy
spurious notes clutter

Table 2: Mapping measured data to skills

4 Hardware

The starting point for this project is to assess
the sound of an unmodified instrument. In this
section, the current choice of hardware is dis-
cussed.

A brief side-project was undertaken to equip
an acoustic guitar with resistive sensors for
detecting the point where strings are pressed
against the fretboard, but because this doesn’t
look and feel natural, would imply that all users
would need to install a similar modification and
would exclude all instruments other than guitar,
this was discarded.

Because nylon-string acoustic guitar is the
primary instrument for the author as well as
for lots of beginning music students, the deci-
sion was to analyse the sound of the instrument
with a microphone or some kind of transducer.

Using a microphone raises the problem that
the sound produced by PlayGuru interferes with
the sound of the instrument. Source separa-
tion techniques are not considered viable for
this project due to the added complexity and
because we want to be able to play and listen
simultaneously, often to the exact same notes.
This would justify a study of itself.

Requiring the musician to use a headset is
also considered undesirable. So the only option
left seems to use a transducer attached to the
instrument.

After some experimenting with various com-
binations of guitar pickups, sensors, preamps
and audio interfaces, it turned out that a com-
bination of a simple piezo pickup and a cheap
USB audio interface does the job very well.

Successful measurements were done with the
piezo pickup attached to the far end of the neck
of a guitar. It is advised to embed the pickup
into a protective cover to prevent the element
itself and the cable from being exposed to me-
chanical strain and mount it with the piezo’s
metal surface touching the wood of the gui-
tar using a rubber padded clamp from the DIY
store.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 57

Figure 5: Embedded piezo pickup

5 Dissemination

User’s experiences and feedback are of crucial
importance for the development of this tool.
While a browser application or mobile app seem
obvious ways to reach thousands of musicians,
development is currently done on Linux and
Raspbian. This is a deliberate choice, partly in-
spired by the author’s lack of experience with
Webaudio intricacies and the acclaimed large
round-trip audio latency of Android devices, for
which a separate study may be justified.

For a large part however, this choice is sup-
ported by the wish to have an inexpensive
stand-alone, self-reliant, single-purpose device.
A series of stand-alone PlayGuru test devices

are being developed, based on a Raspberry Pi
with a tactile interface meant to be intuitive
to blind people. The idea is to attach a piezo
pickup to the instrument, plug in, select the ex-
ercise and start practicing.

6 Conclusions

Several beginners, intermediate guitar players
and some people with no previous experience
have used PlayGuru’s exercises in various stages
of development. The two most mature exercises
used are copying a melody and playing along
with a melody. In most cases the melodies were
generated in real time based on the aformen-
tioned interval-based rules. In some cases a pre-
composed MIDI file was used.
From the start it was clear that users enjoy

the fact that PlayGuru listens to them and re-
wards “well played” responses with an increase
in speed or making the assignment slightly more
challenging.

Figure 6: Stand-alone device for user tests

Several users mentioned a heightened focus,
meaning that they were very concentrated for
a longer time to keep the interaction going and
the level rising. Mistakes bring down the speed
or level in a suble way and do lead to a slight
disappointment, which in many cases proved to
be an incentive to get back into the ‘flow’ of the
exercise.
The project is work in progress. For a well-

founded opinion on the practical use, a lot more
user tests need to be done but the author’s con-
clusion, based on results so far, is that the ap-
proach is promising.

7 Future Work

At the time of writing, research concentrates
on monophonic exercises with a basic machine
learning algorithm.
For the near future the author has plans to

perform a study with a larger group of users who
can use the system by themselves for a longer
time. This requires creating test setups and/or
porting the software to other platforms.
Monophonic exercises may be the preferred

way to develop several skills, but being able to
play, or play along with, your favourite mu-
sic is much more motivating, particularly for
children. An approach resembling Band-in-a-
Box➤ is taken, using a multi-channel MIDI file
as input, with the possibility of indicating which
channels will be heard and which channel will be
‘observed’. This requires both polyphonic play
and analysis, which are largely implemented
but currently belong in the Future Work sec-
tion. On the analysis side, a technique based
on chroma vectors [Tzanetakis, 2003] is being
tested.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 58

Machine learning strategies are being stud-
ied but have not yet been implemented. The
assistance of co-developers would be much ap-
preciated.

8 Acknowledgements

I want to thank the HKU for supporting and
facilitating my work and in particular Gerard
van Wolferen, Ciska Vriezenga and Meindert
Mak for their insights and ideas. Gerard van
Wolferen and Pieter Suurmond were of great
help proof-reading and correcting this paper.
Lastly I would like to thank the LAC review
committee for their excellent observations.

9 Other solutions for
computer-assisted music education

❼ i-maestro

❼ Bart’s Virtual Music School

❼ Rocksmith TM

❼ yousician.com

❼ bestmusicteacher.com

❼ onlinemuziekschool.nl

❼ gitaartabs.nl

References

Meindert Mak. 2015. Connecting music in the
key of life. 1.2

Scott Tennant. 1995. Pumping Nylon, The
Classical Guitarist’s Technique Handbook. Al-
fred Music. 1.1

Ning Hu; Roger B. Dannenberg; George
Tzanetakis. 2003. Polyphonic audio matching
and alignment for music retrieval. 2003 IEEE
Workshop on Applications of Signal Process-
ing to Audio and Acoustics. 7

Eleanor Selfridge-Field Walther B. Hewlett.
1998. Melodic Similarity. The MIT Press.
2.10

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 59

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 60

Faust audio DSP language for JUCE

Adrien ALBOUY and Stéphane Letz
GRAME

11, cours de Verdun (GENSOUL)
69002 LYON,

FRANCE,
{adrien.albouy, letz}@grame.fr

Abstract

Faust [Functional Audio Stream] is a functional
programming language specifically designed for real-
time signal processing and synthesis [1]. It consists
of a compiler that translates a Faust program into
an equivalent C++ program, taking care of generat-
ing the most efficient code. JUCE is an open-source
cross-platform C++ application framework devel-
oped since 2004, and bought by ROLI1 in Novem-
ber 2014, used for the development of desktop and
mobile applications. A new feature to the Faust

environnement is the addition of architectures files
to provide the glue between the Faust C++ output
and the JUCE framework. This article presents the
overall design of the architecture files for JUCE.

Keywords

JUCE, Faust, Domain Specific Language, DSP,
real-time, audio

1 Introduction

From a technical point of view Faust
2 (Func-

tional Audio Stream) is a functional, syn-
chronous, domain specific language designed for
real-time signal processing and synthesis. A
unique feature of Faust, compared to other ex-
isting languages like Max, PD, Supercollider,
etc., is that programs are not interpreted, but
fully compiled.

One can think of Faust as a specification lan-
guage. It aims at providing the user with an
adequate notation to describe signal processors

from a mathematical point of view. This spec-
ification is free, as much as possible, from im-
plementation details. It is the role of the Faust

compiler to provide automatically the best pos-
sible implementation. The compiler translates
Faust programs into equivalent C++ programs
taking care of generating the most efficient code.
The compiler offers various options to control
the generated code, including options to do fully

1https://roli.com/
2http://faust.grame.fr

automatic parallelization and take advantage of
multicore machines.

The generated code can generally compete
with, and sometimes even outperform, C++
code written by seasoned programmers. It
works at the sample level, it is therefore suited
to implement low-level DSP functions like recur-
sive filters up to fullscale audio applications. It
can be easily embedded as it is selfcontained and
does not depend of any DSP library or runtime
system. Moreover it has a very deterministic
behavior and a constant memory footprint.

Being a specification language the Faust

code says nothing about the audio drivers or
the GUI toolkit to be used. It is the role of
the architecture file to describe how to relate
the DSP code to the external world [2]. This
approach allows a single Faust program to be
easily deployed to a large variety of audio stan-
dards (Max-MSP externals, PD externals, VST
plugins, CoreAudio applications, JACK appli-
cations, etc.), and JUCE is now supported.

The aim of JUCE[3] is to allow software to be
written such that the same source code will com-
pile and run identically on Windows, Mac OS X,
Linux platforms for the desktop devices, and on
Android and iOS for the mobile ones. A notable
feature of JUCE when compared to other similar
frameworks is its large set of audio functional-
ity. Those services, the user-interface possibil-
ities and the multi-platform exportability posi-
tion JUCE as a great framework for Faust to
get exported on, to have in the future less code
to maintain up-to-date, and simpler utilization.

In section 2, the idea and the use of the GUI
architecture file will be introduced. In section
3, the JUCE Component hierarchy will be pre-
sented without going into many details. Sec-
tion 4 is the main one, explaining in detail the
graphical architecture file for JUCE. MIDI and
OSC architecture files are introduced in Section
5. Section 6 will treat of the "glue" between
JUCE audio layers and Faust ones. Section 7

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 61

https://roli.com/
http://faust.grame.fr

presents the faust2juce script. Section 8 is a
quick tutorial on how to use JUCE for Faust.

2 Faust GUI architecture files

A Faust UI architecture is a glue between a
host control layer and a Faust module. It is
responsible to associate a Faust module pa-
rameter to a user interface element and to up-
date the parameter value according to the user
actions. This association is triggered by the
dsp::buildUserInterface call, where the DSP
asks a UI object to build the module controllers.

Since the interface is basically graphic ori-
ented, the main concepts are widget based: a
UI architecture is semantically oriented to han-
dle active widgets, passive widgets and widgets
layout.

A Faust UI architecture derives a UI class,
containing active widgets, passive widgets, lay-
out widgets, and metadata.

2.1 Active widgets

Active widgets are graphical elements that
control a parameter value. They are initialized
with the widget name and a pointer to the
linked value. The widget currently considered
are Button, ToggleButton, CheckButton,
RadioButton, Menu, VerticalSlider,
HorizontalSlider, Knob and NumEntry.

A UI architecture must implement a method
addxxx (const char* name, float* zone,
...) for each active widget. Additional param-
eters are available to Slider, Knob, NumEntry,
RadioButton and Menu: the init value, the min
and max values and the step (RadioButton,
Menu and Knob being special kind of Sliders,
cf. subsection 2.4, Metadata).

2.2 Passive widget

Passive widgets are graphical elements that
reflect values. Similarly to active widgets,
they are initialized with the widget name and
a pointer to the linked value. The widget
currently considered are NumDisplay, Led,
HorizontalBarGraph and VerticalBarGraph.
A UI architecture must implement a method
addxxx (const char* name, float* zone,
...) for each passive widget. Additional

parameters are available, depending on the
passive widget type. (NumDisplay and Led are
a special kind of BarGraph, cf. Subsection 2.4).

2.3 Widget layout

Generally, a UI is hierarchically organized into
boxes and/or tab boxes. A UI architecture must

support the following methods to setup this hi-
erarchy:

openTabBox (const char* label)
openHorizontalBox (const char* label)
openVerticalBox (const char* label)
closeBox (const char* label)

Note that all the widgets are added to the cur-
rent box.

2.4 Metadata

The Faust language allows widget labels
to contain metadata enclosed in square
brackets. These metadata are handled
at UI level by a declare method taking
as argument, a pointer to the widget as-
sociated value, the metadata key and value:
declare(float*, const char*, const char*).
Metadata can also declare a DSP as polyphonic,
with a line looking like declare nvoices "8"
for 8 voices. This will always output a poly-
phonic DSP, either you use the polyphonic
option of the compiler or not. This number of
voices can be changed with the compiler (cf.
Section 7).

For instance, if the program needs a Slider
to be a Knob, those lines are written:

declare(&fVslider0, "style", "knob");
addVerticalSlider("Vol", &fVslider0,...);

The style can be a knob, menu, etc... de-
pending on the program.

Multiple aspects of the items can be described
with the metadata, such as the type of the item
just as seen before, the tooltip of the item, the
unit, etc...

3 JUCE Component class

To implement a complete program, the graph-
ical elements described in the previous section
need to be combined with JUCE classes. In the
JUCE Framework, the component class is the
base-class for all JUCE user-interface objects.
The following section explains the relationship
between Faust GUI architecture files, and the
JUCE mechanics.

3.1 Parent and child mechanics

As most frameworks have, JUCE has a hi-
erarchy of Component objects, organized in a
tree structure. The common way to set a
Component as child of another component is
to do parent->addAndMakeVisible(child);.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 62

This function sets the child component as vis-
ible too, because it’s not by default. Multi-
ple functionalities are accessible to run through
this Component tree, with methods that give the
child Component at index i, or give the parent.
There’s even a function allowing to get the par-
ent of a Component with a specific type, this type
being a derived class of Juce::Component. How-
ever, this function does not exist for the child,
and imply that dynamic_cast has to be done if
you want to get a child of a certain type.

3.2 Component setup mechanics

First of all, a Component is drawn if it’s visi-
ble, and its parent too. If a Component is not
visible, its child and all of its children, etc...
will not be visible, but as addAndMakeVisible
function is used most of the time, this
should not be a problem. A Component has
a Rectangle<int> boundsRelativeToParent,
containing its x and y coordinates, and its width
and height. As the variable name implies, the
bounds of a Component is relative to its parent,
and not absolute in the window ; it is very im-
portant in the architecture files for Faust, as
will be demonstrated in subsection 4.4.

3.3 Drawing mechanics

A Component has two virtual functions3

that are the main tools to handle a dy-
namic layout, the void resized() and
void paint(Graphics& g) functions. The
resized one is called each time a Component
bounds are changed, and the paint one when
the Component flag indicates that it needs to be
repainted. The mouse cursor being on top of
it, a mouse click, the Component bounds being
changed, or one or multiple of its child needing
to be repainted indicates that it needs to be
repainted for example.

There is a design class called LookAndFeel
that allows customization of the interface. The
LookAndFeel objects defines the appearance of
all the JUCE widgets, and subclasses can be
used to apply different ’skins’ to the application.

There is obviously a lot more to the
Juce::Component class, but that’s the basics,
or at least what the architecture files need.

4 JuceGUI architecture file

To summarize what has been seen before, the
system of widgets and boxes of Faust needs to

3placeholder functions which programmer must im-

plement

be adapted to the Juce::Component mechanics
in an architecture file called JuceGUI.h. The
following section discusses annotated examples.

4.1 Two different kinds of objects

There are two kinds of object used in the adap-
tation:

• uiComponent, which are basically any items
of the Faust program, like sliders or but-
tons.

• uiBox, which is container component, and
so can contain a uiComponent or some oth-
ers uiBox.

Both are derived classes of a
uiBaseComponent class, which is itself a
derived class of Juce::Component.

The uiBaseComponent class regroups meth-
ods shared by both uiBox and uiComponent,
like void setRatio(), int getTotalWidth(),
etc.... This way, too many dynamic_cast
in our code are avoided. Here’s what the
uiBaseComponent class contains:

float fHRatio, fVRatio;
int fTotalWidth, fTotalHeight;
int fDisplayRectHeight,

fDisplayRectWidth;
String fName;

uiBaseComponent(int totWidth,
int totHeight, String name);

int getTotalHeight() ;
int getTotalWidth();
virtual void setRatio();
float getHRatio();
float getVRatio();
String getName();
void setHRatio();
void setVRatio()
void setBaseComponentSize

(Rectangle<int> r);
void mouseDoubleClick

(const MouseEvent &event) override;

virtual void writeDebug() = 0;
virtual void setCompLookAndFeel

(LookAndFeel* laf) = 0;

The mouseDoubleClick function is a JUCE
overridable function, which is called every time
a Component is double-clicked. Here it’s used

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 63

to call the writeDebug function, showing differ-
ent characteristics of the double clicked uiBox
or uiComponent.

The two pure virtual functions are defined
to have their own behavior for both uiBox and
uiComponent, not being the same obviously.

The virtual void setRatio(); function is
virtual because there is a special case with the
uiBox, which is setting her own ratio, and need
to be asking its child to set their ratios too, in
a recursive way.

As said before, uiComponent inherits from
those uiBaseComponent functions, and is itself
a mother class for plenty of different widgets.
Here’s the inheritance diagram:

Figure 1: Inheritance diagram

A uiComponent subclasses can handle multi-
ple "type" of items.

For instance, uiSlider groups every kind of
sliders: HorizontalSlider, VerticalSlider,
NumEntry and Knob.

4.2 The main window

The user interface cannot be shrunk infinitely in
order to be always lisible and clear, so a mini-
mal window size is defined. That implies that in-
stead of a basic Component in a DocumentWindow
(a resizable window with a title bar and max-
imise, minimise and close buttons), a Viewport
in a DocumentWindow is used, which displays
scrollbars when the window gets lower dimen-
sions than the minimal size of the Faust DSP
program, allowing to have full access to the user
interface even in the lower dimensions.

This Viewport can either contains a uiBox
as presented before, or a uiTabs if the program
requires tabs.

4.3 uiTabs class

The uiTabs class inherits of
Juce::TabbedComponent, which is a
Juce::Component with a TabbedButtonBar on
one of its size. It just needs a Juce::Component
for each tab, and a tab name, and it will display
them.

A tab layout is needed when the
buildUserInterface starts with a openTabBox
call. In this, a boolean tabLayout is set to true,
to know that it’s a tab layout.

While parsing the buildUserInterface, a
uiBox is given to the uiTabs every time the
current tab is "closed". To do that, a vari-
able called order keeps track of the "level" of
the current box. The order starts at 0, is incre-
mented when a new box is opened, and decre-
mented when a box is closed. If the order is 0
in a closeBox() call, then a tab is being closed,
and so the current box is added to the uiTabs,
using the TabbedComponent::addTab function.

Once all the tabs are closed, the tabBox is
closed too, the order is now at -1, and it
triggers the initialization function of uiTabs,
uiTabs::init(). It’ll be described it in the
next subsection.

4.4 Initialization of the layout

First of all, while parsing the
buildUserInterface lines, which are list-
ing the different boxes and items that need
to be displayed, the tree is getting built.
It’s done using the Juce::Component me-
chanics of addAndMakeVisible. The different
uiBaseComponent are added as child of different
uiBox, and uiBox display rectangle size and
total size are calculated every time a box is
closed in the buildUserInterface (i.e. when
closeBox() is called).

The uiBox display rectangle size is the sum
of his child width and the maximum of his child
height, and the contrary depending on its ori-
entation. But margins are added to our display
rectangle width and height, 4 pixels per child,
for a margin of 2 pixels on the top, left, bottom
and right, and the uiBox total size is obtained.
This is to avoid an overlapping effect, having two
items touching each other. Following the same
spirit, 12 pixels are added to the height of the
box if its name needs to be displayed, 12 pixels
being the space needed to display its name.

Here’s the buildUserInterface that display
this program:

ui_interface->openHorizontalBox("TITLE1");

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 64

Figure 2: Representation of the display rectangle size and

the total size of a box with four child

ui_interface->addVerticalSlider("Slider1",
&fVslider0, 0.0f, 0.0f, 6.0f, 1.0f);

ui_interface->addVerticalSlider("Slider2",
&fVslider1, 0.0f, 0.0f, 6.0f, 1.0f);

ui_interface->addVerticalSlider("Slider3",
&fVslider2, 0.0f, 0.0f, 6.0f, 1.0f);

ui_interface->addVerticalSlider("Slider4",
&fVslider3, 0.0f, 0.0f, 6.0f, 1.0f);

ui_interface->closeBox();

In Figure 2, the difference between the dis-

play rectangle size and the total size can
be easily seen. The total size of the box
here named "TITLE1" is the lighter gray, and
the display rectangle size would be the four
darker gray rectangle stick together. The layout
is not aligned seamlessly because of the margin
that is implemented to avoid the overlapping of
the components.

The space left on the top of the box is for its
title, and this margin is included in the total

size .

h =

n−1∑

i=0

(ci.H) (1)

w = max
i∈[0,n−1]

ci.W (2)

H = h+ 4 ∗ n (3)

W = w + 4 (4)

In those equations, H is the total height ,
W the total width , h the display rectangle

height , and w display rectangle width ; ci
being the nth child component of the current
box.

H might get incremented by 12 pixels, de-
pending on the need to display the box name.

4 pixels for each child component are added
on a dimension to have margins between each
of them, because they will be placed aside of
each other in this dimension, and simply 4 pixels
added to the other dimension to have 2 pixels
separating parent and child box on each side.

Once buildUserInterface is done, the last
box is closed, and the user interface initialized.
This last box, that will be called the "main box"
is initiated with ratios of 1 and 1, even if they
are needed, because it’ll take the window size.
Here’s how the UI is initialized:

• Setting the actual rendering size for the
main box, because the total size is
set here, but not the Juce::Component
bounds. That’s done through the
void setBaseComponentSize
(Rectangle<int> r) methods, which sets
the size of the components, and especially
position them right. Concretely, a 30 pix-
els offset is needed on the height for a tab
layout, 30 pixels being the height taken by
the tab bar. Only the main box needs to
be set with an offset, because other boxes
will be positioned depending on its parents
coordinates.

• After that, the ratios are calculated for
the whole tree, from root to leaves. The
horizontal ratio is the component total
width divided by its parent display rectan-
gle width, same for the height. This way,
it avoids to have the margins to mess with
our ratios, and to have a sum of ratio equals
to 1 instead of one approaching 1, but not
being 1 exactly.

• Last step is to set the LookAndFeel for all
uiComponents, which are for all of them
the leaves of the trees. So the tree is fully
parsed there, root to leaves.

The only possible change in the initial-
ization of the program, is in a case of a
tab layout. The uiTabs::init() method
just calls the uiBox::setRatio() and the
uiBox::setCompLookAndFeel(LookAndFeel*)
for every of its tab component.

While going through all the tabs, the algo-
rithm keeps track of the minimal size of the
uiTabs component to be displayed. Its mini-
mal dimensions being the maximum width and
the maximum height of all its tabs.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 65

There, the tree is built, the total size has been
initiated, display rectangle size and the ratios for
all components, all the uiBox and uiComponent.

4.5 Dynamic Layout

At that point, the user interface is dis-
played at his original size, but it needs to
adapt to the potential resizing of the win-
dow. To do that, the uiBoxes are used
to layout all the items. A uiBox item has
a void arrangeComponents(Rectangle<int>
functionRect) function, which is the main tool
to organize the layout. It’s called whenever the
resized() function of the main box is called.

In this function, the initial rectangle given
as argument, that is basically the window size,
will propagate through all the child uiBox and
uiComponent, in a recursive way [4].

At the beginning, it checks if the name needs
to be displayed, and as no child components
should be displayed there, it cuts 12 pixels from
the top of the functionRect, given as argument.

After that, the margins are sets, so 2 pixels are
cut on the left, top, right and bottom side. This
way, overlapping components are avoided. Once
it’s done, it goes through all the child, to give
them the right space to occupy and the right
position of course.

The algorithm works that way: if the current
box is vertical, then it needs to give its child
a vertical part functionRect, and a horizontal
one for a horizontal box of course.The amount
of vertical or horizontal size of the child is cal-
culated, still depending on the vertical nature
of the current box. This size is the box current
height or width, minus the margins, multiplied
by the horizontal or vertical ratio. Concrete ex-
ample: the current box is a horizontal display,
and has 2 child components, one having a hori-
zontal ratio of 0.7 and the other one of 0.3. The
box display size is here 1000x500 pixels, and it’s
total size 1008x504 (2 items and it’s a horizontal
box, so 2 ∗ (2 ∗margin) = 8 on the width, and
2 ∗margin = 4 on the height).

Let’s say the size of the window almost dou-
bled, and it’s now 2008x1004 (arbitrary simple
values). It will calculate that the first item get a
0.7∗(2008−2∗4) = 0.7∗2000 = 1400 pixels wide
space and the second one 0.3∗(2008−2∗4) = 600
pixels. First item bounds will be 1400x1000 and
the second one 600x1000, height being kept the
same, without the margins of course.

On top of that, to keep track of where to place
our components, the functionRect get cut off

little by little every time a uiBaseComponent is
given a rectangle to be displayed in [5]. Basi-
cally, every rectangle that is given to child is
removed from the original functionRect, and
this allow us the keep track of the good x and y
coordinates to give to the child component, with
the margin added. It’s done over and over again
for each child component, cutting from the left
or the top of the boxRectangle<int> rect de-
pending on its orientation.

Figure 3: Representation of the layout algo-
rithm

4.6 The MainContentComponent class

In the adapted MainContentComponent class,
there is plenty of Faust libraries, that are in-
dispensable for the Faust program. There are
some optionals includes, for OSC, MIDI and
polyphonic mode, that depends on the compi-
lation options that the user sets.

The MainContentComponent class is the
Juce::Component contained in our Viewport,
and contains itself a JuceGUI object, that is a
subclass of Juce::Component, Faust GUI class
and MetaDataUI. The minimal things to do is:

addAndMakeVisible(juceGUI);
fDSP = new mydsp();
fDSP->buildUserInterface(&juceGUI);
recommendedSize = juceGUI.getSize();
setSize (recommendedSize.getWidth(),

recommendedSize.getHeight());
setAudioChannels (fDSP->getNumInputs(),

fDSP->getNumOutputs());
[...]

private:
JuceGUI juceGUI;

A simple buildUserInterface call is needed,
set the size of the MainContentComponent, and
set the amount of audio channels. Following the

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 66

same spirit, there is optional code in case of a
MIDI, OSC or polyphonic mode.

5 Other Faust architecture files

Just a GUI architecture file isn’t enough to run a
Faust program on JUCE, adaptations for dif-
ferent kind of control are also needed, such as
OSC and MIDI.

5.1 OSC

OSC integration has been done by devel-
oping a new JuceOSCUI class, subclass of
the base UI class. Two send and re-
ceive ports are defined. Input OSC mes-
sages are decoded by subclassing the JUCE
OSCReceiver class, and implementing its
OSCReceiver::oscMessageReceived method.
Output OSC messages are sent by using the
OSCSender::send method.

The special "hello" message allows to retrieve
several parameters of the Faust applications:
its root OSC port, IP address, input and output
port. The "get" message allows to retrieve the
current, min and max values for a given param-
eter. Finally a float value received on a given
path will allow to change the parameter value
in real-time.

An application wanting to be controlled by
OSC messages has to use an instance of the
JuceOSCUI class, to be given to the DSP
buildUserInterface method.

5.2 MIDI

MIDI messages handling is done by us-
ing the MidiInput and MidiOutput
JUCE classes. A new juce_midi class
subclassing the MidiInputCallback
and implementing the required
MidiInputCallback::handleIncomingMidi
Message method has been defined. MIDI mes-
sages coming from the JUCE layer are decoded
and sent to the corresponding application
controllers. MIDI messages produced by the
application controllers are encoded and sent
using a MidiOutput object.

An application wanting to be controlled by
MIDI messages has to use an instance of the
MidiUI class, created with a juce_midi handler,
to be given to the DSP buildUserInterface
method.

6 Audio integration

To be connected to the external world, a given
Faust DSP has to be connected to an audio
driver and a User Interface definition. JUCE

framework already contains an abstract audio
layer connected to a set of native audio drivers
on all development platforms. JUCE develop-
ers can choose to deploy their code as stan-
dalone audio applications or audio plugins. A
standalone application has to subclass the ab-
stract AudioAppComponent class and implement
the prepareToPlay, getNextAudioBlock and
releaseResources methods:

• prepareToPlay is called just before audio
processing starts with a sample rate param-
eter. The Faust DSP is initiated with this
sample rate value, and input/output chan-
nels number is possibly adapted to match
the capabilities of the used native layer
(that can a different number of input/out-
put channels than the DSP).

• getNextAudioBlock is called every time
the audio hardware needs a new block of
audio data. Audio buffers presented as
a AudioSourceChannelInfo data type are
retrieved and adapted to be given to the
Faust DSP compute method.

• releaseResources is called when audio
processing has finished. Nothing special
has to be done at the Faust level.

7 The faust2juce script

There are many scripts availiable in the Faust

ecosystem allowing to generate a ready to use
binary, project file, or compiled file from a sim-
ple DSP file. They are labeled faust2xxx.

Following the same spirit, a faust2juce
script has been implemented, that allows to cre-
ate a JUCE project directory from a simple DSP
file. The command is used as follow:

faust2juce [-options] dspFile.dsp

This will create a folder containing a .jucer file,
and a "Source" folder containing the Main.cpp
and the MainComponent.h. This folder is self
contained, all needed Faust includes are in the
MainComponent.h, including the compiled DSP.

There are the options available at this mo-
ment for faust2juce:

• -nvoices x: produces a polyphonic self-
contained DSP with x voices, ready to be
used with MIDI events

• -midi: activates MIDI control

• -osc: activates OSC control

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 67

• -help: shows the different options available

As described in subsection 2.4, a number of
voices can be hardcoded for a polyphonic DSP,
but you can change it with the nvoices option.
It has the priority over the metadata declara-
tion. In the case of a non-hardcoded polyphonic
DSP, it will just make it a polyphonic one with
this compiler option. Some others options will
be added later, it’s still in development.

8 How to use JUCE architecture
files

Using JUCE to export a Faust DSP program
file is easy: create the project folder with
faust2juce [-options] dspFile.dsp and
drag & drop the created folder named after the
DSP to the "example" folder contained in the
JUCE git folder.

Simply execute the .jucer file, and select "Save
Project and Open in IDE...", the first time at
least, to generate the JUCE header files, etc...
And it’s ready to execute your program on what-
ever export platform you chose.

9 Conclusion

The Faust audio DSP language implementaion
is now possible with JUCE, and can theoreti-
cally be exported to every platform that JUCE
supports. It has been tested on OS X and iOS,
both work correctly, and has a close performance
to already available options, such as faust2caqt
for OS X and faust2ios, for iOS.

MIDI control, polyphonic mode, and OSC
control are implemented, more features are in
progress of development, to permit a full com-
patibility with the whole Faust library.

JUCE offers two types of "audio project",
standalone applications or plug-in. Currently
the FAUST architecture files are limited to de-
scribe standalone applications, but we are look-
ing forward to adapt our code for plug-ins.

References

[1] Orlarey, Y., Fober, D., and Letz, S. (2009),
"FAUST: an efficient functional approach
to DSP programming." New Computational
Paradigms for Computer Music, 290.

[2] D. Fober, Y. Orlarey, and S. Letz, “Faust

Architectures Design and OSC Support",
IRCAM, (Ed.): Proc. of the 14th Int. Con-
ference on Digital Audio Effects (DAFx-11),
pp. 231-216, 2011.

[3] JUCE online documentation https://www.
juce.com/doc/classes

[4] JUCE "Tutorial: Advanced Rectangle
techniques" https://www.juce.com/doc/
tutorial_rectangle_advanced

[5] J. Storer "Developing Graphical User
Interfaces with JUCE", JUCE Summit
2015 https://www.youtube.com/watch?v=
xsCZoE1s_uw

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 68

https://www.juce.com/doc/classes
https://www.juce.com/doc/classes
https://www.juce.com/doc/tutorial_rectangle_advanced
https://www.juce.com/doc/tutorial_rectangle_advanced
https://www.youtube.com/watch?v=xsCZoE1s_uw
https://www.youtube.com/watch?v=xsCZoE1s_uw

Polyphony, sample-accurate control and MIDI support for FAUST
DSP using combinable architecture files

Stéphane LETZ, Yann ORLAREY,
Dominique FOBER

GRAME
Centre National de Création Musicale

11 Cours de Verdun (Gensoul)
69002, Lyon

France
{letz,orlarey,fober}@grame.fr

Romain MICHON
CCRMA

Stanford University
Stanford, CA 94305-8180

USA
rmichon@ccrma.stanford.edu

Abstract

The Faust architecture files ecosystem is regularly
enriched with new targets to deploy Digital Signal
Processing (DSP) programs. This paper presents re-
cently developed techniques to expand the standard
one DSP source, one program or plugin model, and
to better control parameter changes during the au-
dio computation. Sample accurate control and poly-
phonic instruments definition have been introduced,
and will be explained particularly in the context of
MIDI control.

Keywords

Faust, DSP programming, audio, MIDI

1 Introduction

Faust is a functional programming language
specifically designed for real-time signal process-
ing and synthesis. From a high-level specifica-
tion, its compiler typically generates the DSP
computation as a C++ class1 to be wrapped by
so-called architecture files and connected to the
external world.

1.1 Audio and UI Architecture Files

Native audio drivers are developed as subclasses
of a base audio class, controllers as subclasses of
a base UI class. Typical Graphical User Inter-
face architectures are based on well established
frameworks like QT2 or JUCE3, and allow to
display a ready to use window with sliders, text
zones and buttons. Audio and UI parts are fi-
nally combined with the actual DSP computa-
tion to produce the final audio application or
plugin (see Figure 1).

Non graphical controllers can also be defined
as subclasses of UI, simply by ignoring the lay-
out description4, and just keeping the actual

1The faust2 development branch can also generate C,
LLVM IR, WebAssemby etc. target languages.

2http://doc.qt.io
3https://www.juce.com/doc/classes
4Typically done using hgroup, vgroup or tgroup in

the DSP source code.

User Interface
Module

Audio Driver Module

DSP code

Figure 1: DSP code is generated by the compiler, audio
and UI codes are added from the generic architecture
files.

controls definition (with their name, default
value, value range etc.). OSCUI and httpdUI
classes [1] typically follow this strategy.

New architecture files have been regularly
added to the already rich Faust ecosystem, to
expand the variety of possible targets for the
DSP code.

1.2 Macro Construction of DSP
Components

The Faust program specification is usually en-
tirely done in the language itself. But in some
specific cases it may be useful to develop sepa-
rated DSP components and combine them in a
more complex setup.

Since taking advantage of the huge number
of already available UI and audio architecture
files is important, keeping the same dsp API is
preferable5, so that more complex DSP can be
controlled and audio rendered the usual way:

class dsp {

public:
.....
virtual int getNumInputs() {}
virtual int getNumOutputs() {}
virtual void buildUserInterface(UI* ui) {}
virtual void init(int samplingRate) {}

5Only part of the complete DSP API is presented
here.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 69

http://doc.qt.io
https://www. juce.com/doc/classes

virtual void compute(int count,
FAUSTFLOAT** inputs,
FAUSTFLOAT** outputs) {}

.....
};

Extended DSP classes will typically subclass
the dsp root class and override part of its API.

This paper shows how this approach can be
used to define new extended and combinable dsp
classes. Section 2 describes tools to combine sep-
arately developed DSP. Section 3 explains how
sample accurate parameter control of a given
DSP can be done using the new timed_dsp class,
and when it needs to be used.

Section 4 presents the model used to deploy
polyphonic instruments, section 5 presents how
the previously presented components can be
used together in the context of MIDI control,
and finally the conclusion tries to enlarge this
work in a more general analysis of the Faust

compiler generated code.

2 Combining DSP

2.1 Dsp Decorator Pattern

A dsp_decorator class, subclass of the root dsp
class has first been defined. Following the dec-
orator design pattern6, it allows behavior to be
added to an individual object, either statically
or dynamically.

The extended DSP class hierarchy is shown in
Figure 2. As an example of the decorator pat-
tern, the timed_dsp class allows to decorate a
given DSP with sample accurate control capa-
bility as explained in section 3.

Figure 2: DSP classes diagram

2.2 Combining DSP Components

A few additional macro construction classes,
subclasses of the root dsp class have been de-
fined in the public faust/dsp/dsp-combiner.h
header file:

6https://en.wikipedia.org/wiki/Decorator_
pattern

• the dsp_sequencer class combines two
DSP in sequence, assuming that the num-
ber of outputs of the first DSP equals the
number of input of the second one. Its
buildUserInterface method is overloaded
to group the two DSP in a tabgroup, so that
control parameters of both DSPs can be in-
dividually controlled7. Its compute method
is overloaded to call each DSP compute
in sequence, using an intermediate output
buffer produced by first DSP as the input
one given to the second DSP.

• the dsp_parallelizer class com-
bines two DSP in parallel. Its
getNumInputs/getNumOutputs meth-
ods are overloaded by correctly reflecting
the input/output of the resulting DSP as
the sum of the two combined ones. Its
buildUserInterface method is overloaded
to group the two DSP in a tabgroup, so
that control parameters of both DSP can
be individually controlled. Its compute
method is overloaded to call each DSP
compute, where each DSP consuming and
producing its own number of input/output
audio buffers taken from the method
parameters.

3 Sample Accurate Control

DSP audio languages usually deal with several
timing dimensions when treating control events
and generating audio samples. For performance
reasons, systems maintain separated audio rate
for samples generation and control rate for asyn-
chronous messages handling.

The audio stream is most often computed by
blocks, and control is updated between blocks.
To smooth control parameter changes, some lan-
guage chose to interpolate parameter values [7]
between blocks.

In some cases control may be more finely in-
terleaved with audio rendering [8], and some lan-
guages [9] simply choose to interleave control
and sample computation at sample level.

Although the Faust language permits the de-
scription of sample level algorithms (like recur-
sive filters etc.), Faust generated DSP are usu-
ally computed by blocks. Underlying audio ar-
chitectures usually give a fixed size buffer over
and over to the DSP compute method which
consumes and produces audio samples.

7Typically using any UI object.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 70

https://en.wikipedia.org/wiki/Decorator_pattern
https://en.wikipedia.org/wiki/Decorator_pattern

3.1 Control to DSP Link

In the current version of the Faust generated
code, the primary connection point between the
control interface and the DSP code is simply
a memory zone. For control inputs, the archi-
tecture layer continuously write values in this
zone, which is then sampled by the DSP code
at the beginning of the compute method, and
used with the same values during the entire call.
Because of this simple control/DSP connexion
mechanism, the most recent value is seen by the
DSP code.

Similarly for control outputs8, the DSP code
inside the compute method possibly write sev-
eral values at the same memory zone, and the
last value only will be seen by the control archi-
tecture layer when the method finishes.

Although this behaviour is satisfactory for
most use-cases, some specific usages need to
handle the complete stream of control values
with sample accurate timing. For instance keep-
ing all control messages and handling them at
their exact position in time is critical for proper
MIDI clock synchronisation.

3.2 Time-Stamped Control

The first step consists in extending the archi-
tecture control mechanism to deal with time-
stamped control events. Note that this requires
the underlying event control layer to support
this capability. The native MIDI API for in-
stance is usually able to deliver time-stamped
MIDI messages.

The next step is to keep all time-stamped
events in a time ordered data structure to be
continuously written by the control side, and
read by the audio side.

Finally the sample computation has to take
account of all queued control events, and cor-
rectly change the DSP control state at succes-
sive points in time.

3.3 Slices Based DSP Computation

With time-stamped control messages, changing
control values at precise sample indexes on the
audio stream becomes possible. A generic slices
based DSP rendering strategy has been imple-
mented in the timed_dsp class.

A ring-buffer is used to transmit the stream
of time-stamped events from the control layer
to the DSP one. In the case of MIDI control
case for instance, the ring-buffer is written with
a pair containing the time-stamp expressed in

8Using bargraph kind of UI elements.

samples and the actual MIDI message each time
one is received. In the DSP compute method,
the ring-buffer will be read to handle all mes-
sages received during the previous audio block.

Since control values can change several times
inside the same audio block, the DSP compute
cannot be called only once with the total num-
ber of frames and the complete inputs/outputs
audio buffers. The following strategy has to be
used:

• several slices are defined with control values
changing between consecutive slices.

• all control values having the same time-
stamp are handled together, and change
the DSP control internal state. The slice
is computed up to the next control param-
eters time-stamp until the end of the given
audio block is reached.

• in the Figure 3 example, four slices with the
sequence of c1, c2, c3, c4 frames are succes-
sively given to the DSP compute method,
with the appropriate part of the audio in-
put/output buffers. Control values (ap-
pearing here as [v1,v2,v3], then [v1,v3],
then [v1], then [v1,v2,v3] sets) are changed
between slices.

Figure 3: Audio block slice-based computation

Since time-stamped control messages from the
previous audio block are used in the current
block, control messages are aways handled with
one audio buffer latency.

4 Polyphonic Instruments

Directly programing polyphonic instruments in
Faust is perfectly possible. It is also needed
if very complex signal interaction between the
different voices have to be described9.

But since all voices would always be com-
puted, this approach could be too CPU costly
for simpler or more limited needs. In this case

9Like sympathetic strings resonance in a physical
model of a piano for instance.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 71

describing a single voice in a Faust DSP pro-
gram and externally combining several of them
with a special polyphonic instrument aware ar-
chitecture file is a better solution. Moreover,
this special architecture file takes care of dy-
namic voice allocations and control MIDI mes-
sages decoding and mapping.

4.1 Polyphonic Ready DSP Code

By convention Faust architecture files with
polyphonic capabilities expect to find control
parameters named freq, gain and gate. The
metadata declare nvoices "8"; kind of line
with a desired value of voices can be added in
the source code.

In the case of MIDI control, the freq parame-
ter (which should be a frequency) will be auto-
matically computed from MIDI note numbers,
gain (which should be a value between 0 and 1)
from velocity and gate from keyon/keyoff events.
Thus, gate can be used as a trigger signal for any
envelope generator, etc.

4.2 Using the mydsp_poly class

The single voice has to be described by a Faust

DSP program, the mydsp_poly class is then used
to combine several voices and create a poly-
phonic ready DSP:

• the faust/dsp/poly-dsp.h file contains the
definition of the mydsp_poly class used to
wrap the DSP voice into the polyphonic ar-
chitecture. This class maintains an array of
dsp type of objects, manage dynamic voice
allocations, control MIDI messages decod-
ing and mapping, mixing of all running
voices, and stopping a voice when its out-
put level decreases below a given threshold.

• as a sub-class of DSP, the mydsp_poly
class redefines the buildUserInterface
method. By convention all allocated voices
are grouped in a global Polyphonic tab-
group. The first tab contains a Voices
group, a master like component used to
change parameters on all voices at the
same time, with a Panic button to be used
to stop running voices10, followed by one
tab for each voice. Graphical User Inter-
face components will then reflect the multi-
voices structure of the new polyphonic DSP
(Figure 4).

10An internal control grouping mechanism has been
defined to automatically dispatch a user interface action
done on the master component on all linked voices.

Figure 4: Extended multi-voices GUI interface

The resulting polyphonic DSP object can be
used as usual, connected with the needed audio
driver, and possibly other UI control objects like
OSCUI, httpdUI, etc. Having this new UI hi-
erarchical view allows complete OSC control of
each single voice and their control parameters,
but also all voices using the master component.

The following OSC messages reflect the same
DSP code either compiled normally, or in poly-
phonic mode (only part of the OSC hierarchies
are displayed here):

// Mono mode

/0x00/0x00/vol f -10.0
/0x00/0x00/pan f 0.0

// Polyphonic mode

/Polyphonic/Voices/0x00/0x00/pan f 0.0
/Polyphonic/Voices/0x00/0x00/vol f -10.0
...
/Polyphonic/Voice1/0x00/0x00/vol f -10.0
/Polyphonic/Voice1/0x00/0x00/pan f 0.0
...
/Polyphonic/Voice2/0x00/0x00/vol f -10.0
/Polyphonic/Voice2/0x00/0x00/pan f 0.0
...

The polyphonic instrument allocation takes
the DSP to be used for one voice11, the desired
number of voices, the dynamic voice allocation
state12, and the group state which controls if
separated voices are displayed or not (Figure 4):

DSP = new mydsp_poly(dsp, 2, true, true);

11The DSP object will be automatically cloned in the
mydsp_poly class to create all needed voices.

12Voices may be always running, or dynamically start-
ed/stopped in case of MIDI control.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 72

With the following code, note that a poly-
phonic instrument may be used outside of a
MIDI control context, so that all voices will
be always running and possibly controlled with
OSC messages for instance:

DSP = new mydsp_poly(dsp, 8, false, true);

4.3 Controlling the Polyphonic
Instrument

The mydsp_poly class is also ready for MIDI
control and can react to keyon/keyoff and pitch-
wheel messages. Other MIDI control parameters
can directly be added in the DSP source code.

4.4 Deploying the Polyphonic
Instrument

Several architecture files and associated scripts
have been updated to handle polyphonic instru-
ments:

As an example on OSX, the script
faust2caqt foo.dsp can be used to cre-
ate a polyphonic CoreAudio/QT application.
The desired number of voices is either declared
in a nvoices metadata or changed with the
-nvoices num additional parameter13. MIDI
control is activated using the -midi parameter.

The number of allocated voices can possibly
be changed at runtime using the -nvoices pa-
rameter to change the default value (so using
./foo -nvoices 16 for instance).

Several other scripts have been adapted using
the same conventions.

4.5 Polyphonic Instrument with a
Global Output Effect

Polyphonic instruments may be used with an
output effect. Putting that effect in the main
Faust code is not a good idea since it would be
instantiated for each voice which would be very
inefficient. This is a typical use case for the
dsp_sequencer class previously presented with
the polyphonic DSP connected in sequence with
a unique global effect (Figure 5).
faustcaqt inst.dsp -effect effect.dsp

with inst.dsp and effect.dsp in the same folder,
and the number of outputs of the instrument
matching the number of inputs of the effect, has
to be used. A dsp_sequencer object will be
created to combine the polyphonic instrument
in sequence with the single output effect.

13-nvoices parameter takes precedence over the meta-
data value.

Polyphonic ready faust2xx scripts will then
compile the polyphonic instrument and the ef-
fect, combine them in sequence, and create a
ready to use DSP.

Figure 5: Polyphonic instrument with output effect
GUI interface: left tab window shows the polyphonic
instrument with its Voices group only, right tab window
shows the output effect.

5 MIDI Control

MIDI control connects DSP parameters with
MIDI messages (in both directions), and can be
used to trigger polyphonic instruments.

5.1 MIDI Messages Description in the
DSP Source Code

MIDI control messages are described as meta-
data in UI elements. They are decoded by a new
MidiUI class, subclass of UI, which parses in-
coming MIDI messages and updates the appro-
priate control parameters, or sends MIDI mes-
sages when the UI elements (sliders, buttons...)
are moved.

5.2 Defined Standard MIDI messages

A special [midi:xxx yyy...] metadata needs
to be added in the UI element. Here is the de-
scription of three common MIDI messages:

• [midi:keyon pitch] in a slider or bar-
graph will map the UI element value to
keyon velocity in the (0, 127) range. When
used with a button or checkbox, 1 will be
mapped to 127, 0 will be mapped to 0,

• [midi:keyoff pitch] in a slider or bar-
graph will map the UI element value to
keyoff velocity in the (0,127) range. When
used with a button or checkbox, 1 will be
mapped to 127, 0 will be mapped to 0,

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 73

• [midi:ctrl num] in a slider or bargraph
will map the UI element value to (or from)
(0, 127) range. When used with a button
or checkbox, 1 will be mapped to 127, 0 will
be mapped to 0.

The full description of supported MIDI mes-
sages is now part of the Faust documentation.

5.3 MIDI Clock Synchronization

MIDI clock based synchronization can be used
to slave a given Faust program, using the sam-
ple accurate control mechanism described in sec-
tion 3. The following three messages have to be
used:

• [midi:start] in a button or checkbox will
trigger a value of 1 when a start MIDI mes-
sage is received

• [midi:stop] in a button or checkbox will
trigger a value of 0 when a stop MIDI mes-
sage is received

• [midi:clock] in a button or checkbox will
deliver a sequence of successive 1 and 0 val-
ues each time a clock MIDI message is re-
ceived, seen by Faust code as a square
command signal, to be used to compute
higher level information.

A typical Faust program will then use the
MIDI clock command signal to possibly com-
pute the Beat Per Minutes (BPM) information,
or for any synchronization need it may have.

Here is a simple example of a sinusoid gener-
ated which a frequency controlled by the MIDI
clock stream14, and starting/stopping when re-
ceiving the MIDI start/stop messages:

import("stdfaust.lib");

// square signal (1/0), changing state
// at each received clock
clocker = checkbox("MIDI clock[midi:clock]");

// ON/OFF button controlled
// with MIDI start/stop messages
play = checkbox("On/Off [midi:start][midi:stop]");

// detect front
front(x) = (x-x’) != 0.0;

// count number of peaks during one second
freq(x) = (x-x@ma.SR) : + ~ _;

process = os.osc(8*freq(front(clocker))) * play;

14Using an external MIDI clock generator and chang-
ing its tempo allow to precisely control the sinusoid fre-
quency.

Note that the described sample accurate
MIDI clock synchronization model can currently
only be used at input level. Because of the
simple memory zone based connection point be-
tween the control interface and the DSP code,
output controls (like bargraph) cannot generate
a stream of control values. Thus a reliable MIDI
clock generator cannot be implemented with the
current approach.

5.4 MIDI Classes

A midi base class defining MIDI messages de-
coding/encoding methods has been developed.
A midi_hander subclass implements actual de-
coding. Several concrete implementations based
on native API have been written (Figure 6) and
can be found in the faust/midi folder.

Depending on the used native MIDI API,
event time-stamps are either expressed in ab-
solute time or in frames. They are converted
to offsets expressed in samples relative to the
beginning of the audio buffer.

Connected with the new MidiUI class, sub-
class of UI, they allow a given DSP to be con-
trolled with incoming MIDI messages or possi-
bly send MIDI messages when its internal con-
trol state changes.

Figure 6: MIDI classes diagram

In the following piece of code, a MidiUI ob-
ject is created and connected to a rt_midi [5]
MIDI message handler, then given as parameter
to the standard buildUserInterface to control
the DSP parameters:

rt_midi midi_handler("MIDI");
MidiUI midiinterface(&midi_handler);
DSP->buildUserInterface(&midiinterface);

6 Deployment

The extended architecture files have been pre-
sented and used in the context of statically gen-
erated and compiled DSP, that is generating
C++ code from Faust, then compiling the re-
sulting code in executable applications or plug-
ins. They have been deployed in several faust2xx

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 74

scripts and especially in faust2api presented in
[6].

Note that they can also be used with dynam-
ically libfaust generated DSP15 as in particular
in FaustLive [3] standalone just-in-time Faust

compiler, or in faustgen~ Max/MSP external
object.

7 Conclusion

The sample accurate control model could easily
be adapted to work with MIDI controllable plu-
gins like LV2 instruments16, so that MIDI clock
synchronization could be used.

Expanding the polyphonic and sample accu-
rate control model over the network in the lib-
faustremote [4] library is still in progress.

As a general concluding remark, a deeper re-
thinking of the control/DSP connection model
in the Faust compiled code will have to be
done. As explained in section 3, control and
DSP computation interaction is somewhat lim-
ited in the current model of the generated code.

The described solution stays at the architec-
ture layer level with some limitations. Although
sample accurate control for inputs can be done
using the presented slices based DSP computa-
tion, this strategy does not help to properly re-
trieve the stream of control output values.

A cleaner approach would be to extend the
model of control signals to be a list of time-
stamped values, so that the compute would han-
dle a slice of time-stamped input controls (kept
from the previous block), and possibly produces
a slice of time-stamped output controls. Having
this more general strategy at the code genera-
tion level still has to be developed.

Acknowledgments
This work has been done under the FEEVER
project [ANR-13-BS02-0008] supported by the
“Agence Nationale pour la Recherche".

References

[1] D. Fober, Y. Orlarey, and S. Letz, “Faust

Architectures Design and OSC Support",
IRCAM, (Ed.): Proc. of the 14th Int. Con-
ference on Digital Audio Effects (DAFx-11),
pp. 231-216, 2011.

[2] Orlarey, Y., Fober, D., and Letz, S. (2009),
“FAUST: an efficient functional approach

15Dynamically libfaust generated DSP are objects of
llvm_dsp or interpreter_dsp types, subclasses of the dsp
root class with the same API.

16http://lv2plug.in/doc/html/

to DSP programming." New Computational
Paradigms for Computer Music, 290.

[3] S. Denoux, S. Letz, Y. Orlarey and D.
Fober, “FAUSTLIVE Just-In-Time Faust
Compiler... and much more." Linux Audio
Conference, 2014.

[4] S. Letz, S. Denoux and Y. Orlarey, “Au-
dio Rendering/Processing and Control Ubiq-
uity ? a Solution Built Using the Faust Dy-
namic Compiler and JACK/NetJack." ICM-
C/SMC, Athenes 2014.

[5] “RtMidi framework online documentation"
http://www.music.mcgill.ca/~gary/
rtmidi/

[6] R.Michon, J.Smith, C.Chafe, S. Letz and Y.
Orlarey, “faust2api: a Comprehensive API
Generator for Android and iOS." Linux Au-
dio Conference, 2017.

[7] J.McCartney, “Rethinking the Computer
Music Language: SuperCollider." Computer
Music Journal, Winter 2002.

[8] P.Donat-Bouillud, JL.Giavitto, A.Cont,
N.Schmidt and Y.Orlarey, “Embedding
native audio-processing in a score following
system with quasi sample accuracy." ICMC,
Utrecht 2016.

[9] G. Wang, P. R. Cook, and S. Salazar,
“Chuck: A strongly timed computer music
language." Computer Music Journal, 2016.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 75

http://lv2plug.in/doc/html/
http://www.music.mcgill.ca/~gary/rtmidi/
http://www.music.mcgill.ca/~gary/rtmidi/

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 76

faust2api: a Comprehensive API Generator for Android and iOS

Romain Michon, Julius Smith,
Chris Chafe

CCRMA
Stanford University

Stanford, CA 94305-8180
USA

{rmichon,jos,cc}@ccrma.stanford.edu

Stéphane Letz, Yann Orlarey
GRAME

Centre National de Création Musicale
11 Cours de Verdun (Gensoul)

69002, Lyon
France

{letz,orlarey}@grame.fr

Abstract

We introduce faust2api, a tool to generate cus-
tom DSP engines for Android and iOS using the
Faust programming language. Faust DSP objects
can easily be turned into MIDI-controllable poly-
phonic synthesizers or audio effects with built-in sen-
sors support, etc. The various elements of the DSP
engine can be accessed through a high-level API,
made uniform across platforms and languages.

This paper provides technical details on the im-
plementation of this system as well as an evaluation
of its various features.

Keywords

Faust, iOS, Android, Mobile Instruments

1 Introduction

Mobile devices (smart-phones, tablets, etc.)
have been used as musical instruments for the
past ten years, both in the industry (e.g.,
GarageBand1 for iPad, Smule’s apps,2 mo-
Forte’s GeoShred,3 etc.), and in the academic
community ([Tanaka, 2004], [Geiger, 2006],
[Gaye et al., 2006], [Essl and Rohs, 2009] and
[Wang, 2014]).
Implementing real-time Digital Signal Pro-

cessing (DSP) engines from scratch on mobile
platforms can be hard using standard audio
APIs provided with common operating systems
(we’ll only cover iOS and Android here). In-
deed, CoreAudio on iOS and OpenSL ES on
Android are relatively low-level APIs offering
customization possibilities not needed by most
audio app developers. Fortunately, there ex-
ist several third party cross-platform APIs to
work with real-time audio on mobile devices at a
higher level (e.g., SuperPowered,4 JUCE,5 etc.).
Additionally, several open-source tools allow to

1http://www.apple.com/ios/garageband. All
the URLs in this paper were verified on 01/26/17.

2https://www.smule.com
3http://www.moforte.com/geoshredapp
4http://superpowered.com
5https://www.juce.com

use objects written in common computer music
languages such as PureData:6 libpd [Brinkmann
et al., 2011] and Csound:7 Mobile Csound Plat-
form (MCP) [Lazzarini et al., 2012] on mobile
platforms.
Similarly, we introduced faust2android

in a previous publication [Michon, 2013]: a
tool allowing to turn Faust

8 [Orlarey et al.,
2009] code into a fully operational Android
application. faust2android is based on
faust2api [Michon et al., 2015]. It al-
lows to turn a Faust program into a cross-
platform API usable on Android and iOS to
carry out various kinds of real-time audio pro-
cessing tasks.
In this paper, we present a completely re-

designed version of faust2api offering the
same features on Android and iOS:

• polyphony and MIDI support,

• audio effects chains,

• built-in sensors support,

• low latency audio,

• etc.

First, we’ll give an overview of how
faust2api works. Then, technical details on
the implementation of this system will be pro-
vided. Finally, we’ll evaluate it and present fu-
ture directions for this project.

2 Overview

2.1 Basics

At its highest level, faust2api is a command
line program taking a Faust code as its main
argument and generating a package containing
a series of files implementing the DSP engine.
Various flags can be used to customize the API.
The only required flag is the target platform:

6https://puredata.info
7http://www.csounds.com
8http://faust.grame.fr

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 77

faust2api -ios myCode.dsp

will generate a DSP engine for iOS and

faust2api -android myCode.dsp

will generate a DSP engine for Android.
The content of each package is quite different

between these two platforms (see §3), but the
format of the API itself remains very similar
(see Figure 1 at page 4). The iOS DSP engines
generated with faust2api consist of a large
C++ object (DspFaust) accessible through a
separate header file. This object can be con-
veniently instantiated and used in any C++ or
Objective-C code in an app project. A typi-
cal “life cycle” for a DspFaust object can be

DspFaust *dspFaust = new DspFaust(SR,

blockSize); dspFaust->start();

dspFaust->stop(); delete dspFaust;

start() launches the computation of the
audio blocks and stop() stops (pauses) the
computation. These two methods can be re-
peated as many times as needed. The construc-
tor allows to specify the sampling rate and the
block size, and is used to instantiate the au-
dio engine. While the configuration of the au-
dio engine is very limited at the API level (only
these two parameters can be configured through
it), lots of flexibility is given to the program-
mer within the Faust code. For example, if
the Faust object doesn’t have any input, then
no audio input will be instantiated in the audio
engine, etc.

The value of the different parameters of a
Faust object can be easily modified once the
DspFaust object is created and is running.
For example, the freq parameter of the sim-
ple Faust code

f = nentry("freq",440,50,1000,0.01);

process = osc(f);

can be modified simply by calling

dspFaust->setParamValue("freq",440);

Faust user-interface elements (nentry here)
are ignored by faust2api and simply used as
a way to declare parameters controllable in the
API. API packages generated by faust2api

also contain a markdown documentation pro-
viding information on how to use the API as
well a list of all the parameters controllable with
setParamValue().

The structure of the DSP engine package
is quite different for Android since it contains
both C++ and JAVA files (see §3). Otherwise,
the same steps can be used to work with the
DspFaust object.

2.2 MIDI Support

MIDI support can be easily added to a
DspFaust object simply by providing the
-midi flag when calling faust2api. MIDI
support works the same way on Android and
iOS: all MIDI devices connected to the mobile
device before the app is launched can control the
Faust object, and any new device connected
while the app is running will also be able to
control it.
Standard Faust MIDI meta-data9 can be

used to assign MIDI CCs to specific parame-
ters. For example, the freq parameter of the
previous code could be controlled by MIDI CC
52 simply by writing

f = nentry("freq[midi: ctrl

52]",440,50,1000,0.01);

2.3 Polyphony

Faust objects can be conveniently turned into
polyphonic synthesizers simply by specifying
the maximum number of voices of polyphony
when calling faust2api using the -nvoices
flag. In practice, only active voices are allocated
and computed, so this number is just used as a
safeguard.
As used for many years by the various

tools for making Faust synthesizers, such as
faust2pd, compatibility with the -nvoices
option requires the freq, gain and gate pa-
rameters to be defined. faust2api automati-
cally takes care of converting MIDI note num-
bers to frequency values in Hz for freq, MIDI
velocity to linear amplitude-gain for gain, and
note-on (1) and note-off (0) for gate:

f = nentry("freq",440,50,1000,0.01); g

= nentry("gain",1,0,1,0.01);

t = button("gate"); process = osc(f)*g*
t;

Here, t could be used to trigger an envelope
generator, for example. In such a case, the voice
would stop being computed only after t is set
to 0 and the tail-off amplitude becomes smaller
than -60dB (configurable using macros in the
application code).
A wide range of methods is accessible to work

with voices. A “typical” life cycle for a MIDI
note can be

long voiceAddress = dspFaust->keyOn(

note,velocity);

dspFaust->setVoiceParamValue("param",

voiceAddress,paramValue);

9http://faust.grame.fr/images/

faust-quick-reference.pdf

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 78

dspFaust->keyOff(note);

setVoiceParamValue() can be used to
change the value of a parameter for a specific
voice.
Alternatively, voices can be allocated without

specifying a note number and a velocity:

long voiceAddress = dspFaust->newVoice

();

dspFaust->setVoiceParamValue("param",

voiceAddress,paramValue);

dspFaust->deleteVoice(voiceAddress);

For example, this can be very convenient to
associate voices to specific fingers on a touch-
screen.
When MIDI support is enabled in

faust2api, MIDI events will automati-
cally interact with voices. Thus, if a MIDI
keyboard is connected to the mobile device,
it will be able to control the Faust object
without additional configuration steps.

2.4 Adding Audio Effects

In most cases, effects don’t need to be re-
implemented for each voice of polyphony and
can be placed at the end of the DSP chain.
faust2api allows to provide a Faust object
implementing the effects chain to be connected
to the output of the polyphonic synthesizer.
This can be done simply by giving the -effect
flag followed by a Faust effects chain file name
(e.g., effect.dsp) when calling faust2api:

faust2api -android -nvoices 12 -effect

effect.dsp synth.dsp

The parameters of the effect automatically
become available in the DspFaust object and
can be controlled using the setParamValue()
method.

2.5 Working With Sensors

The built-in accelerometer and gyroscope of a
mobile device can be easily assigned to any of
the parameters of a Faust object using the acc
or gyr meta-data:

g = nentry("gain[acc: 0 0 -10 0

10]",1,0,1,0.01);

Complex mappings can be implemented using
this system. This feature is not documented
here, but more information about it is available
in [Michon, 2017]. This reference also provides
a series of tutorials on how to use faust2api.

3 Implementation

faust2api takes advantage of the modularity
on the Faust architecture system to generate

its custom DSP engines. [Letz et al., 2017] For
example, turning a monophonic Faust synthe-
sizer into a polyphonic one can be done in a
simple generic way. Both on Android and iOS,
faust2api generates a large C++ file imple-
menting all the features used by the high level
API. On iOS, this API is accessed through a
C++ header file that can be conveniently in-
cluded in any C++ or Objective-C code. On
Android, a JAVA interface allows to interact
with the native (C++) block. The DSP C++

code is the same for all platforms (see Figure 2
at page 5) and is wrapped into an object imple-
menting the polyphonic synthesizer followed by
the effects chain (assuming that the -mvoices
and -poly2 options were used during compila-
tion).
In this section, we provide more information

on the architecture of DSP engines generated
by faust2api for Android and iOS.

3.1 iOS

The global architecture of API packages gen-
erated by faust2api is relatively simple on
iOS since C++ code can be used directly in
Objective-C (which is one of the two lan-
guages used to make iOS applications along
with swift). The Faust synthesizer object
gets automatically connected to the audio en-
gine implemented using CoreAudio. As ex-
plained in the previous section, the sampling
rate and the buffer length are defined by the
programmer when the DspFaust object is cre-
ated. The number of instantiated inputs and
outputs is determined by the Faust code. By
default, the system deactivates gain correction
on the input but this can be changed using a
macro in the including source code.
MIDI support is implemented using RtMidi

[Scavone and Cook, 2005], which is auto-
matically added to the API if the -midi

option was used for compilation. Alterna-
tively, programmers might choose to use the
propagateMidi() method to send raw MIDI
events to the DspFaust object in case they
would like to implement their own MIDI re-
ceiver.
The same approach can be used for built-

in sensors using the propagateAcc() and
propagateGyr() methods.

3.2 Android

Android applications are primarily written in
JAVA. However, despite the fact that the Faust
compiler can generate JAVA code, it is not a

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 79

Basic Elements Parameters Control

DspFaust: Constructor getParamsCount: Get number of params
˜DspFaust: Destructor setParamValue: Set param value
start: Start audio processing getParamValue: Get param value
stop: Stop audio processing getParamAddress: Get param address
isRunning: True if processing is on getParamMin: Get param min value
getJSONUI: Get UI JSON description getParamMax: Get param max value
getJSONMeta: Get Metadata JSON getParamInit: Get param init value

getParamTooltip: Get param description
Polyphony

keyOn: Start a new note Other Functions

keyOff: Stop a note propagateMidi: Propagate raw MIDI
newVoice: Start a new voice messages
deleteVoice: Delete a voice propagateAcc: Propagate raw accel data
allNotesOff: Terminate all active voices setAccConverter: Set accel mapping
setVoiceParamValue: Set param propagateGyr: Propagate raw gyro data
value for a specific voice setGyrConverter: Set gyro mapping
getVoiceParamValue: Get param getCPULoad: Get CPU load
value for a specific voice

Figure 1: Overview of the API functions.

good choice for real-time audio signal processing
[Michon, 2013]. Thus, DSP packages generated
by faust2api contain elements implemented
both in JAVA and C++.

The native portion of the package (C++) im-
plements the DSP elements as well as the au-
dio engine (see Figure 2) which is based on
OpenSL ES.10 The audio engine is configured
to have the same behavior as on iOS. Native
elements are wrapped into a shared library ac-
cessible in JAVA through a Java Native Inter-
face (JNI) using the Android Native Develop-
ment Kit (NDK).11

MIDI receivers can only be created in JAVA

on Android (and only since Android API 23),
thus MIDI support is implemented in the JAVA
portion. Like on iOS, the propagateMidi()
method can be used to implement custom MIDI
receivers.

While raw sensor data can be retrieved in C++
on Android, we decided to implement a system
similar to the one used for MIDI, where raw
sensor data are pushed from the JAVA layer to
the native one.

10https://www.khronos.org/opensles
11https://developer.android.com/ndk/

index.html

4 Evaluation

4.1 Use in Other Frameworks

faust2api is now used at the core of
faust2android [Michon, 2013] and
faust2ios. It is also used as the basis
for our new SmartKeyboard12 tool (currently
under development), allowing to generate mu-
sical applications with advanced user interfaces
on Android and iOS. Figure 3 presents Nuance,
[Michon et al., 2016] a musical instrument
based on faust2api and SmartKeyboard.

4.2 Audio Latency

We measured the “touch-to-sound” and the
“round-trip” audio latency of apps based on
faust2api for various devices using the tech-
niques described by Google on their website.13

The “touch-to-sound” latency is the time it
takes to generate a sound after a touch event
was registered on the touch screen of the de-
vice. The “round-trip” latency is the time it
takes to process an analog signal recorded by
the built-in microphone or acquired by the line
input.
Latency performance hasn’t improved on iOS

(see Table 1) compared to our previous study
[Michon et al., 2015], except for newer devices

12https://ccrma.stanford.edu/˜rmichon/

smartKeyboard
13https://source.android.com/devices/

audio/latency_measurements.html

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 80

Faust DSP (Synth)

Polyphony

Faust DSP (Effect)

Synth Object

MIDI Support
(RtMidi -> CoreMidi)

Audio Engine (CoreAudio)

iOS Faust API

Faust DSP (Synth)

Polyphony

Faust DSP (Effect)

Synth Object

C++

Audio Engine (OpenSL ES)

C++
(Native Library)

JNI Interface

Built-In Sensors
Control

MIDI Support
(AndroidMidi)

Built-In Sensors
Control

Android Faust APIJAVA

iOS API

Android API

Faust Code

faust2api

Audio In/Out Audio In/Out

Figure 2: Overview of DSP engines generated with faust2api.

Figure 3: Nuance: a musical instrument using
faust2api.

such as the iPad Pro. On the other hand, An-
droid made huge progress (see Table 2), thanks
to tremendous work carried out by Google, as
well as our completely rewritten audio engine.
Table 2 shows that a “reasonable” latency

can only be achieved with the latest version
of Android, which confirms the measurements
made by Google.14 Unfortunately, such per-
formances can only be attained on a few de-
vices supported by Google, and configured with
a specific sampling rate and buffer length.

5 Future Directions

We believe that faust2api has reached a ma-
ture and stable state. However, many elements

14https://source.android.com/devices/

audio/latency_measurements.html\

#measurements

Touch to Round
Device Sound Trip
iPhone6 30 ms 13 ms
iPhone5 36 ms 13 ms
iPodTouch 36 ms 13 ms
iPadPro 28 ms 12 ms
iPadAir2 35 ms 13 ms
iPad2 45 ms 15 ms

Table 1: Audio latency for different iOS devices
using faust2api.

Touch to Round
Device Sound Trip OS
HTC Nexus 9 29 ms 15 ms 7.0
Huawei Nexus 6p 31 ms 17 ms 7.0
Asus Nexus 7 37 ms 48 ms 7.0
Samsung Gal. S5 37 ms 48 ms 5.0

Table 2: Audio latency for different Android
devices using faust2api.

can be improved:
First, while basic MIDI support is provided,

we haven’t tested it with complex MIDI inter-
faces such as the one using the Multidimen-
sional Polyphonic Expression (MPE) standard
(e.g. LinnStrument,15 ROLI Seaboard,16 etc.).

15http://www.rogerlinndesign.com/

linnstrument.html
16https://roli.com/products/

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 81

Currently, specific parameters of the various
elements of the API (such as audio engine, MIDI
behavior, etc.) can only be configured using
source-code macros. We would like to provide
a more systematic and in some cases dynamic
way of controlling them.
Finally, we plan to add more targets to

faust2api for various kinds of platforms to
help design elements such as audio plug-ins,
standalone applications, and embedded sys-
tems.

6 Conclusions

Faust gives access to dozens of high qual-
ity open source sound processors and genera-
tors ranging from specialized types of filters,
to virtual analog oscillators, etc. Thanks to
faust2api, all these elements can be easily
embedded and controlled in any Android or iOS
app in a very simple manner.
One of the new experimental features of the

Faust compiler allows to select at run time the
portions of a Faust object that are computed.
This makes it possible to create very large ob-
jects embedding multiple synthesizers and ef-
fects. We believe that this feature, in combi-
nation with faust2api, will allow to design
complex Faust-based DSP engines for a wide
range of platforms.

References

Peter Brinkmann, Peter Kirn, Richard
Lawler, Chris McCormick, Martin Roth, and
Hans-Christoph Steiner. 2011. Embedding
PureData with libpd. In Proceedings of the
Pure Data Convention, Weinmar, Germany.

Georg Essl and Michael Rohs. 2009. Inter-
activity for mobile music-making. Organised
Sound, 14(2):197–207.

Lalya Gaye, Lars Erik Holmquist, Frauke
Behrendt, and Atau Tanaka. 2006. Mobile
music technology: Report on an emerging
community. In Proceedings of the Interna-
tional Conference on New Interfaces for Mu-
sical Expression (NIME-06), Paris, France,
June.

Günter Geiger. 2006. Using the touch screen
as a controller for portable computer mu-
sic instruments. In Proceedings of the 2006
International Conference on New Interfaces
for Musical Expression (NIME-06), Paris,
France.

seaboard-grand

Victor Lazzarini, Steven Yi, Joseph Timoney,
Damian Keller, and Marco Pimenta. 2012.
The mobile Csound platform. In Proceed-
ings of the International Conference on Com-
puter Music (ICMC-12), Ljubljana, Slovenia,
September.

Stéphane Letz, Yann Orlarey, Dominique
Fober, and Romain Michon. 2017. Polyphony,
sample-accurate control and MIDI support
for FAUST DSP using combinable architec-
ture files. In Proceedings of Linux Audio Con-
ference (LAC-17), Saint-Etienne, France.

Romain Michon, Julius Orion Smith, and
Yann Orlarey. 2015. MobileFaust: a set of
tools to make musical mobile applications
with the Faust programming language. In
Proceedings of the Linux Audio Conference
(LAC-15), Mainz, Germany, April.

Romain Michon, Julius O. Smith, Chris
Chafe, Matthew Wright, and Ge Wang. 2016.
Nuance: Adding multi-touch force detection
to the iPad. In Proceedings of the Sound
and Music Computing Conference (SMC-16),
Hamburg, Germany.

Romain Michon. 2013. faust2android: a
Faust architecture for Android. In Proceed-
ings of the 16th International Conference on
Digital Audio Effects (DAFx-13), Maynooth,
Ireland, September.

Romain Michon. 2017. Faust tutorials. Web-
page. https://ccrma.stanford.edu/

˜rmichon/faustTutorials.

Yann Orlarey, Stéphane Letz, and Dominique
Fober, 2009. New Computational Paradigms
for Computer Music, chapter “Faust : an Effi-
cient Functional Approach to DSP Program-
ming”. Delatour, Paris, France.

Gary Scavone and Perry Cook. 2005. Rt-
Midi, RtAudio, and a synthesis toolkit
(STK) update. In Proceedings of the 2005
International Computer Music Conference,
Barcelona, Spain.

Atau Tanaka. 2004. Mobile music making.
In Proceedings of the 2004 conference on New
interfaces for musical expression (NIME04),
National University of Singapore.

Ge Wang. 2014. Ocarina: Designing the
iPhone’s Magic Flute. Computer Music Jour-
nal, 38(2):8–21, Summer.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 82

New Signal Processing Libraries for Faust

Romain Michon, Julius Smith
CCRMA

Stanford University
Stanford, CA 94305-8180

USA
{rmichon,jos}@ccrma.stanford.edu

Yann Orlarey
GRAME

Centre National de Création Musicale
11 Cours de Verdun (Gensoul)

69002, Lyon
France

orlarey@grame.fr

Abstract

We present a completely re-organized set of signal
processing libraries for the Faust programming lan-
guage. They aim at providing a clearer classification
of the different Faust DSP functions, as well as bet-
ter documentation. After giving an overview of this
new system, we provide technical details about its
implementation. Finally, we evaluate it and give
ideas for future directions.

Keywords

Faust, Digital Signal Processing, Computer Music
Programming Language

1 Introduction

Faust is a functional programming language for
real time Digital Signal Processing (DSP) tar-
geting high-performance audio applications and
plug-ins for a wide range of platforms and stan-
dards. [Orlarey et al., 2009]
One of Faust’s strength lies in its DSP li-

braries implementing a large collection of ref-
erence implementations ranging from filters to
audio effects and sound generators, etc.

When Faust was created, it had a lim-
ited number of DSP libraries that were
organized in a “somewhat” coherent way:
math.lib contained mathematical functions,
and music.lib everything else (filters, ef-
fects, generators, etc.). Later, the li-
braries filter.lib, oscillator.lib, and
effect.lib were developed [Smith, 2008],
[Smith, 2012], which had significant overlap in
scope with music.lib.
A year ago, we decided to fully reorganize the

Faust libraries to

• provide more clarity,

• organize functions by category,

• standardize function names,

• create a dynamic documentation of their
content.

In this paper, we give an overview of the or-
ganization of the new Faust libraries, as well
as technical details about their implementation.
We then evaluate them through the results of a
workshop on Faust that was taught at the Cen-
ter for Computer Research in Music and Acous-
tics (CCRMA) at Stanford University in 2016,
and we provide ideas for future directions.

2 Global Organization and
Standards

2.1 Overview

The new Faust libraries1 are organized in dif-
ferent files presented in Figure 1. Each file
contains several subcategories allowing to eas-
ily find functions for specific uses. While some
libraries host fewer functions than others, they
were created to be easily updated with new ele-
ments. The content of the old (and now depre-
cated) Faust libraries was spread across these
new files, making backward compatibility a bit
hard to implement (see §2.4).

More specifically, the old music.lib was
removed since it contained much overlap in
scope with oscillator.lib, effect.lib,
and filter.lib.
effect.lib was divided into several

“specialized” libraries: compressors.lib,
misceffects.lib, phaflangers.lib,
reverbs.lib, and vaeffects.lib. Sim-
ilarly, the content of oscillator.lib

is now spread between noises.lib and
oscillators.lib. Finally, demo.lib hosts
demo functions, typically adding user-interface
elements with illustrative parameter defaults.

2.2 Prefixes

Each Faust library has a recommended
two-letter namespace prefix defined in the
“meta library” stdfaust.lib. For example,
stdfaust.lib contains the lines

1http://faust.grame.fr/library.html. All
the URLs in this paper were verified on 01/30/17.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 83

analyzer.lib maths.lib

- Amplitude Tracking - Constants
- Spectrum-Analyzers - Functions
- Mth-Octave Spectral Level
- Arbitrary-Crossover Filter misceffects.lib

- Banks and Spectrum Analyzers - Dynamic
- Filtering

basics.lib - Time Based
- Conversion Tools - Pitch Shifting
- Counters and Time/Tempo Tools - Meshes
- Array Processing and Pattern Matching
- Selectors (Conditions) noises.lib

- Other Misc Functions Noise generators library.

compressors.lib oscillators.lib

Compressors and limiters library. - Wave-Table-Based Oscillators
- LFOs

delays.lib - Low Frequency Sawtooths
- Basic Delay Functions - Bandlimited Sawtooth
- Lagrange Interpolation - Bandlimited Pulse, Square,
- Thiran Allpass Interpolation and Impulse Trains

- Filter-Based Oscillators
demos.lib - Waveguide-Resonators
- Analyzers
- Filters phaflangers.lib

- Effects Phasers and flangers library
- Generators

reverbs.lib

envelopes.lib Reverbs library.
Envelope generators library.

routes.lib

filters.lib Signal routing library.
- Basic Filters
- Comb Filters signals.lib

- Direct-Form Sections Misc signal tools library.
- Direct-Form Second-Order
- Biquad Sections spats.lib

- Ladder/Lattice Spatialization tools library.
- Virtual Analog Filters
- Simple Resonator synths.lib

- Butterworth Filters Misc synthesizers library.
- Elliptic (Cauer) Filters
- Filters for Parametric Equalizers vaeffects.lib

(Shelf, Peaking) Virtual analog effects library.
- Arbitrary-Crossover Filter-Banks

Figure 1: Overview of the organization of the new Faust libraries.

fi = library("filters.lib");

os = library("oscillators.lib");

so that functions from oscillator.lib

can be invoked using the os prefix and func-
tions from filter.lib through fi:

import("stdfaust.lib");

process = os.sawtooth(440) : fi.lowpass

(2,2000);

It is of course possible to avoid prefixes using
the import directive:

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 84

import("filters.lib");

import("oscillators.lib");

process = sawtooth(440) : lowpass

(2,2000);

The libraries presently avoid name collisions,
so it is possible to load all functions from all
libraries into one giant namespace soup:

import("all.lib");

process = sawtooth(440) : lowpass

(2,2000);

Alternatively, all Faust-defined functions
can be loaded into a single namespace separate
from the user’s namespace:

sf = library("all.lib"); // standard

faust namespace

process = sf.sawtooth(440) : sf.lowpass

(2,2000);

Further details can be found in the documen-
tation for the libraries.2

2.3 Standard Functions

The Faust libraries implement dozens of func-
tions, and it can be hard for new users to find
standard elements for basic uses. For example,
filter.lib contains seven different lowpass
filters, and it’s probably not obvious to some-
one with little experience in signal processing
which one should be used.

To address this problem, the new Faust li-
braries declare “standard” functions (see Fig-
ure 2) that are automatically added to the li-
brary documentation.3 Standard functions are
organized by categories, independently from
the library where they are declared (see §3).
They should cover the needs of most users used
to computer music programming environments
such as PureData,4 SuperCollider,5 etc.

2.4 Backward Compatibility

With such major changes, providing a decent
level of backward compatibility proved to be
quite complicated. The old Faust libraries
(effect.lib, filter.lib, math.lib,
music.lib and oscillator.lib) can still
be used and will remain accessible for about
one year.
In order to make this possible, we had to find

a way to make them cohabit with the new li-
braries without creating conflicts. Thus, we de-
cided to use plurals for the name of the new

2http://faust.grame.fr/library.html
3http://faust.grame.fr/library.html\

#standard-functions.
4https://puredata.info.
5http://supercollider.github.io.

libraries, allowing to concurrently use our new
filters.lib with the old filter.lib, for
example.
If one of the old libraries is imported in

a Faust program, the Faust compiler now
throws a warning indicating the use of a dep-
recated library.

2.5 Other “Non-Standard” Libraries

A few “non-standard” libraries for very specific
applications remain accessible but are not doc-
umented (see §3):

• hoa.lib: high order ambisonics library

• instruments.lib: library used by the
Faust-STK [Michon and Smith, 2011]

• maxmsp.lib: compatibility library for
Max/MSP

• tonestacks.lib: tonestack emulation
library used by Guitarix6

• tubes.lib: guitar tube emulation library
used by Guitarix

3 Automatic Documentation

The new Faust libraries use a new automatic
documentation system based on the faust2md
(Faust to MarkDown) script which is now part
of the Faust distribution. It allows to eas-
ily write MarkDown comments within the code
of the libraries by respecting the standards de-
scribed below.
Library headers and descriptions can be cre-

ated with

//##### Library Name ##### // Some

Markdown text.

//########################

Libraries can be organized into sections using
the following syntax:

//===== Section Name ===== // Some

Markdown text.

//========================

Each function in a library should be docu-
mented as such:

//---- Function Name ---- // Some

Markdown text.

//-----------------------

The libraries documentation can be conve-
niently generated by running:

make doclib

6http://guitarix.org.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 85

Analysis Tools Envelopes

an.amp follower Amplitude follower en.adsr ADSR envelope
an.mth oct[...] Octave analyzers en.ar AR envelope

en.asr ASR envelope
Basic Elements en.smoothEnv Exponential envelope

ba.beat Pulse generator
si.block Block a signal Filters

ba.bpf Break Point Function fi.bandpass Bandpass (Butterworth)
si.bus Bus of n signals fi.resonbp Bandpass (resonant)

ba.bypass1 Bypass (mono) fi.bandstop Bandstop (Butterworth)
ba.bypass2 Bypass (stereo) fi.tf2 Biquad Filters

ba.count Counts in a list fi.allpass fcomb Comb (allpass)
ba.countdown Samples count down fi.fb fcomb Comb (feedback)

ba.countup Samples count up fi.ff fcomb Comb (feedforward)
de.delay Integer delay fi.dcblocker DC blocker

de.fdelay Fractional delay fi.filterbank Filterbank
ba.impulsify Signal to impulse fi.fir FIR (arbitrary order)

ba.sAndH Sample and hold fi.high shelf High shelf
ro.cross Cross n signals fi.highpass Highpass (Butterworth)
si.smoo Smoothing fi.resonhp Highpass (resonant)

si.smooth Controllable smoothing fi.iir IIR (arbitrary order)
ba.take Element from a list fi.levelfilter Level filter
ba.time Timer fi.low shelf Low shelf

fi.lowpass Lowpass (Butterworth)
Conversion fi.resonlp Lowpass (resonant)

ba.db2linear dB to linear fi.notchw Notch filter
ba.linear2db Linear to dB fi.peak eq Peak equalizer

ba.midikey2hz MIDI key to Hz
ba.pole2tau Pole to t60 Generators

ba.samp2sec Samples to seconds os.impulse Impulse
ba.sec2samp Seconds to samples os.imptrain Impulse train
ba.tau2pole t60 to pole os.phasor Phasor

no.pink noise Pink noise
Effects os.pulsetrain Pulse train

ve.autowah Auto-wah os.lf imptrain Low-freq pulse train
co.compressor Compressor os.sawtooth Sawtooth wave

ef.cubicnl Distortion os.lf saw Low-freq sawtooth
ve.crybaby Crybaby os.osc Sine (filter-based)

ef.echo Echo os.oscsin Sine (table-based)
pf.flanger Flanger os.square square wave

ef.gate mono Signal gate os.lf square Low-freq square
co.limiter Limiter os.triangle Triangle
pf.phaser2 Phaser os.lf triangle Low-freq triangle
re.fdnrev0 Reverb (FDN) no.noise White noise

re.freeverb Reverb (Freeverb)
re.jcrev Reverb (simple) Synths

re.zita rev1 Reverb (Zita) sy.additiveDrum Additive drum
sp.panner Panner sy.dubDub Filtered sawtooth

ef.transpose Pitch shift sy.combString Comb string
sp.spat Panner sy.fm FM

ef.speakerbp Speaker simulator sy.sawTrombone Lowpassed sawtooth
ef.stereo width Stereo width sy.popFiltPerc Popping filter

ve.vocoder Vocoder
ve.wah4 Wah

Figure 2: Standard Faust functions with their corresponding prefix when used with
stdfaust.lib.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 86

at the root of the Faust distribution. This
will generate an html and a pdf file in the
/documentation folder using pandoc.7

4 Evaluation and Future Directions

The new Faust libraries were beta tested dur-
ing the CCRMA Faust Summer Workshop at
Stanford University.8 In previous editions of
the workshop, students had to go through the
library files to get the documentation of specific
functions. During last year’s workshop, thanks
to the new libraries documentation, students
were able to find information about functions
simply by doing a search in the documentation
file. Additionally, none of them encountered
problems while using the new libraries which
was very satisfying.

The Faust libraries are meant to grow
with time, and we hope that this new for-
mat will facilitate the integration of new con-
tributions. Eventually, we plan to divide
filters.lib into more subcategories, like we
did for the old oscillator.lib. Finally,
physmodels.lib which is a new library for
physical modeling of musical instruments is cur-
rently under development.

5 Conclusions

The new Faust libraries provide a platform
to easily prototype DSP algorithms using the
Faust programming language. Their new or-
ganization, in combination with their automat-
ically generated documentation, simplifies the
search for specific elements covering a wide
range of uses. New “standard functions” help
to point new users to useful elements to imple-
ment various kind of synthesizers, audio effects,
etc. Finally, we hope that this new format will
encourage new contributions.

6 Acknowledgments

Thanks to Albert Gräf for his contributions
to the design of the new libraries, and for
single-handedly implementing a solid backward-
compatibility scheme!

References

Romain Michon and Julius O. Smith. 2011.
Faust-STK: a set of linear and nonlinear
physical models for the Faust programming

7http://pandoc.org.
8https://ccrma.stanford.edu/˜rmichon/

faustWorkshops/2016.

language. In Proceedings of the 14th Inter-
national Conference on Digital Audio Effects
(DAFx-11), Paris, France, September.

Yann Orlarey, Stéphane Letz, and Dominique
Fober, 2009. New Computational Paradigms
for Computer Music, chapter “Faust : an Effi-
cient Functional Approach to DSP Program-
ming”. Delatour, Paris, France.

Julius Orion Smith. 2008. Virtual electric gui-
tars and effects using Faust and Octave. In
Proceedings of the Linux Audio Conference
(LAC-08), pages 123–127, KHM, Cologne,
Germany.

Julius O. Smith. 2012. Signal processing li-
braries for Faust. In Proceedings of Linux
Audio Conference (LAC-12), Stanford, USA,
May.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 87

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 88

Heterogeneous data orchestration

Interactive fantasy under SuperCollider

Sébastien Clara

CIEREC UJM – PhD student
35 rue du 11 novembre

Saint-Étienne, France, 42000
sebastien.clara@univ-st-etienne.fr

Abstract

For L’Imaginaire music ensemble, I composed a
piece of interactive music involving acoustic
instruments and surround electronic music. The
interaction between live musicians and electronics
is based on data collected in real time from
acoustic instruments. This data is further used to
adjust timbre and synchronize electronics with the
rest of the music.

Keywords

SuperCollider, interactivity, music mixed

1 Introduction

For L'Imaginaire1 music ensemble, I composed
a piece of interactive music mixed. Mixed music is
a term used in musicological literature to refer to a
musical genre. It is defined by the alloy of
instrumental music and electronic music. For this
paper, I wish to focus on an interactive property of
my piece.

Historically, the electronic part of mixed music
is composed in a studio and fixed on a magnetic
tape2. This technique makes impossible the
interaction between the interpreters and the
electronic sound. Feedback helps to improve the
compositional process of the tape. The other
technique is to perform audio processing of the
acoustic instruments in real time3. In this case, we

1Musical ensemble composed by Keiko Murakami
(flutes), Philippe Koerper (saxophones) and Maxime
Springer (piano). http://www.limaginaire.org/.

2The first pieces of music using this technique:
Orphée 51 and Orphée 53 by Pierre Schaeffer and
Pierre Henry (1951 and 1953) and Musica su due
dimensioni by Bruno Maderna (1952 and 1958).

3The first pieces of music using this technique:
Mixtur (1964) and Mikrophonie I (1964) by Karlheinz
Stockhausen.

are talking about a device that increases the sonic
possibilities of the acoustic instrument. Feedback
is used to regulate electronic sound by a human or
an automaton.

I use these two techniques of electronic sound
accompaniment in my work, but the increase in
computing power and the versatility of the tools
have allowed a median way. In the next chapter, I
present my problematic. Thereafter, I will show
my issue with an example which could be
extrapolated to other devices.

2 Problematic

According to Robert Rowe, "Interactive

computer music systems are what are the changes

in response to musical input. Such responsiveness

allows these systems to participate in live

performances, of both notated and improvised

music" [1]. How can a system listen to a musician
and make an appropriate decision to generate a
sound response? In his book, Rowe analyzes
systems that use the MIDI standard to
communicate between instruments and computers.
But how can we use traditional instruments?

The audio descriptors4 correspond to parameters
that describe an analyzed sound. A set of
descriptors is used to construct a data set and
create spaces for representing the sound. The
parameters that are extracted can be described in
different ways, depending on what is expected
from the information conveyed by the parameter.

The sound acquisition sensor for the processing
unit is a microphone. Therefore, the use of audio
descriptors in interactive computer music systems
allows the use of standard acoustic instruments.

4With SuperCollider, it is necessary to install its
extension package to benefit from a wide choice of
descriptors : https://github.com/supercollider/sc3-
plugins.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 89

To control electronic sound with the sound of an
acoustic instrument, many descriptors can be used.
To do this, it is necessary to match a sound
characteristic with the values of the parameters
that describe it. The preparation of this report will
allow us to establish a particular threshold and
once it is crossed, the system can trigger a
response.

However, the interval between the extreme
values of a parameter depends on its nature and on
the analyzed sound source. To use this technique
of interaction between an instrumentalist and
electronic sound, a first difficulty is to negotiate
with the heterogeneity of the data produced by the
different audio descriptors.

For example, I want to use the nuance and pitch
of a sound to build a particular accompaniment.
The amplitude descriptor returns a number that can
range from 0 to 1 and the pitch descriptor returns a
frequency. The range of extreme values returned
by the pitch descriptor depends on the ambit of the
analyzed sound source. Determining a trigger
threshold to activate a response of a system
involves crossing values of different magnitudes
sometimes from sound sources of different natures.

Moreover, this technique uses sound capture and
this information is variable depending on its
environment. Consequently, elaborate settings in a
studio with a particular electro-acoustic chain
would be less effective in another location with a
different electro-acoustic chain. So, how can we
treat the heterogeneity of the data produced by
different audio descriptors, different sound
sources, different electro-acoustic chains and
different concert locations, to achieve
homogeneous electronic music accompaniment
for each interpretation of the same piece?

3 Creating a repository

The first step is to establish a reference. This
will serve as a standard for a single piece, a
specific electro-acoustic chain and a particular
place. We will be obliged to renew it each time
one of these three parameters changes.
Furthermore, this repository will allow us to
characterize our data and to determine thresholds
for performing a particular electronic sound
accompaniment.

In the following example, we use the amplitude
descriptor (Amplitude.kr) and pitch (Pitch.kr). The
values are transmitted by the OSC protocol
(SendReply.kr) to the SuperCollider clients at the

/dataTrigger address. The data is sent whenever
an onset is detected (Onsets.kr). When
instantiating the synthesizer, two arguments are
available. The first determines the number of
inputs of the signal to be analyzed on our audio
interface (SoundIn.ar). The second determines the
onset detection threshold.

Execution of figure 1 will only give the
definition of your synthesizer to SuperCollider

audio server5. Synthesizer is not instantiated, so it
does not work and it does not ask for resources to
your hardware. We will run6 it only when we want
to receive data (figure 2).

We now have to build a data collector to
constitute our repository. To do this, we use the
OSCFunc object. It is fast responder for incoming
OSC messages. We configure it with the
previously defined OSC address. When a new
message arrives from the analyzer, it executes a
function. In this case, this function saves the
amplitude and pitch of the signal in array global
variables.

We set to -9 dB the onsets detection threshold.
We can change this parameter for change the
density of the data reception. The analyzer listens
to the first input of our audio interface (default
setting). In figure 2, running the first block starts
the acquisition of the data. Running the last line
kills the synthesizer and responder instances, frees
memory and processor usage. The collected

5http://doc.sccode.org/Classes/SynthDef.html.
6http://doc.sccode.org/Classes/Synth.html.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 90

information is stored in variable arrays. We can

The graph shows the evolution of the parameter
over time and allows us to make a correspondence
between a sound characteristic and some values.
The histogram provides a representation of the
distribution of the values of the parsed parameter.
This observation allows us to characterize the
distribution produced by a descriptor.

4 Using the repository

In our system, we determine the value of a
threshold to trigger a response to accomplish
dynamic electronic music accompaniment. This
choice may be arbitrary or be determined in
response to a specificity of the analyzed sound
source. Above a certain value, our program
triggers a response for example. We can also
choose this value according to its frequency of
appearance in the distribution and according to the
sound result produced by this choice, we can
increase or decrease the density of our electronic
accompaniment by modifying the value of our
threshold. However, how do we handle values of
different magnitudes?

We manipulate repository by the requested
percentile. To use this method, it is necessary to
install an additional library. For that, you can use
the SuperCollider package manager7 to install
MathLib. This one gives us access to additional
statistics methods for arrays.

The percentile rank corresponds to the
proportion of the values of a distribution less than
or equal to a determined value. We manipulate our
data with float values from 0 to 1. For example, if
we want to know the value equal to 90% of our
data, we use 0.9.

During the adjustment phase of our system, we
can tune several parameters of different
magnitudes transparently with a single scale.

7http://doc.sccode.org/Classes/Quarks.html.

5 System Response

In order for our system to respond to certain
stimuli, we must attribute to it a means of sound
production. To do this, we define an arbitrary

To implement a concrete example, we assume
that our device listens to two types of percussion.
One of the percussions emits sounds high-pitched
than the other. We decide that our system will
respond only to the percussion which emits the
most high-pitched sounds and to the most loud
sounds. With onsets detection threshold, our
condition for triggering a response depends on
two others parameters:

If the frequency of the answers does not suit us,
we can return to the choice of the values of these
variables to modify the sensitivity of our system.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 91

The implementation of a response for our
system follows the same structure as Figure 2. A
responder wait for incoming OSC messages from
the analyzer. When a new message arrives, if it
meets the previously formulated conditions (high-
pitched and loud), a response is issued.

This response is customized according to the
analysis data. This connection is made by a
sonification process, "technique of rendering

sound in response to data and interactions" [2]. I
do not deal with the mapping technique in this
paper, but its mastery is a source of variation and
expressiveness for electronic music. To make this
relation, we map the synthesizer parameter from
an input range to an output range. We can set the
input range with the repository information and
adjust the output according to the desired sound
quality. Figure 7 is the implementation of the
response of our system.

At the end, we must free objects for frees
memory and processor usage.

6 For further

For this paper, we concentrated our system to its
simplest expression. In this chapter, we wish to
develop it design. Some of these ideas were
conceived during the development of our piece and
others afterwards.

Robert Rowe divides his interactive computer
music system (Cypher) into two sections [1]. The
listener analyzes the data produced by a musician
and the player delivers a musical response. The
structure of SuperCollider source code implies this
organization. Our analysis synthesizer is the
listener and the function of the responder object
for incoming OSC messages is the player. We keep
these terms to locate the following points.

Our listener can also have an implicit function of
time master. Indeed, we transmit the data of the
analysis every time an onset is detected. But we
can transmit them at a given frequency. The
responses delivered by the system would then be
have a beat.

We can use our listener to produce an
automation (with Env and EnvGen.kr objects). An
automation allows to control and to automate the
variation of a parameter over a given time. In this
way, we determine the evolution of any threshold
or parameter.

We can parallelize other listeners who analyze
other sound qualities (brightness, noise,
dissonance, etc.) to achieve other triggers
threshold and make complex electronic music
accompaniment executed by our system.

For our player, we can define a maximum
number of synthesizers executed in parallel in
order to preserve the resources of the system and /
or to control the acoustic density so as not to
saturate our perception.

In addition, we can perform a certain musical
process8 or that feeds on our repository instead of
running a simple synthesizer. The interactive
system developed by Jean-Claude Risset for his
duets for one pianist [3] is very interesting for this
way. He uses MIDI data (pitch, velocity and
duration) which he transforms according to
traditional compositional operations:
transposition, reversal, canon, etc.

7 Implementation

I control my audio processor by a graphical
interface (Figure 9) and MIDI controller. The
different audio tracks allow me to adjust the
intensity of the electronic sound layers. The flute,
sax and piano tracks deal with interactive
electronic sound accompaniment. The synth track
manages my non-real time composite electronic
music. Finally, the live track amplifies the
acoustic instruments.

The creation of the repository is realized
directly in the interface and makes this action
transparent. Graphical interface allows a sound
engineer to play my work and this interface makes
rehearsals and concerts easier.

A MIDI pedal assigned to a performer manages
the overall setting. Fourteen key moments

8http://doc.sccode.org/Tutorials/A-Practical-
Guide/PG_01_Introduction.html.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 92

articulate the electronics for a duration of fifteen
minutes.

To create my electronic accompaniment, I use
the descriptors of amplitude, pitch, centroid and
noise. The operation of coupling between the data
of the analysis and the parameters of the
synthesizers [2] makes it possible to control the
form of electronic music accompaniment by
scaling, transposition or reversal. This relation can
be fixed or variable.

Generally, the sound source of my electronic
music accompaniment does not come from sound
synthesis, but acoustic instruments. When the
density of the responses of the system is not
limited, the responses are superimposed to
continuously transform the timbre of the electronic
sound. When the density of the responses of the
system is limited, the responses can arrive in
successive waves and produce a dynamic
accompaniment.

8 Epilogue

To design our system, our initial motivation was
to simplify the use of different descriptors, to
simplify our system settings, to customize the
responses of the system according to the sensitivity
of the interpreter and to produce a homogeneous
electronic accompaniment to each interpretation of
the same notated music under different conditions.

But in addition, we obtain an open interactive
system that can be adapted from a specific model
to the intuition of a musician. We identified four
steps to explore in order to implement our practical
solution and develop an interactive scenario [4].

The first step focuses on the sound of the
instrumentalist. What particularities of sound do
we want to relate to our system? What filter do we
want to use to trigger an answer? In the example
developed for this paper, we make our filter with
the parameters of onset detection, pitch and
amplitude. The thresholds established to constitute
this filter allow us to play on the sensitivity or the
particularity of the answers delivered by our
system.

The second question to implement our solution
is to choose the type of response to trigger. Should
the answer be monophonic, polyphonic,
contrapuntal, etc.? In other words, what
organizational model should we use to develop our
response? In our example, we produce one item
per answer. This element is strongly correlated
with the sound analyzed and the operations applied

to determine the sound characteristics of our
response are conceived during the last step of this
practical solution.

The third step in using our system is to
determine which synthesizer we want to assign to
our system. Controls can be implemented in
synthesizers. This possibility can give us solutions
to build a previously chosen model. For example,
a synthesizer can perform a glissando. In the
example developed for this paper, we use a simple
granular FM synthesis.

The final step in implementing our solution is to
determine the type of relationship between the
analysis data and the parameters of our
synthesizer. How to get expressive sounds with
sonification process [2] ? Should our relationship
be static or dynamic? How should the plan of
connections between these various elements be
established? For the example developed in this
paper, we have established a one-to-many and
many-to-one static connection plan. The
amplitude determined by the analysis is correlated
with the granular density of the synthesis, the
modulation index and the duration of the
response. The pitch determined by the analysis is
correlated with the pitch of our response. A
transposition is performed by a scaling operation.
Finally, the amplitude and the pitch analyzed
serve to determine the modulation frequency of
the FM synthesis of the response delivered by our
system.

9 Conclusion

For this paper, we have implemented our open
interactive system under SuperCollider - platform
for audio synthesis and algorithmic composition.
We could have implemented this system on other
software. Moreover, use free software increases
the durability of our work. Laurent Pottier recalls
the history of the precariousness of technologies
in electronic music [5] and free software answers
to this problem.

An example concerns the portage of Pluton by
Philippe Manoury from the 4X9 to Max [6]. The
piece did not really sound exactly the same way
on both platforms. After a thorough study of the
4X, the engineers discovered that a 4X hardware
limitation influenced the sound result. This
limitation was implemented in the Max patch to
find an electronic music equivalent [7].

94X is real time effect processors designed by
Giuseppe di Guigno at IRCAM in the 1970s.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 93

Free software is an important factor of durability
and reproducibility in the digital art. The ubiquity
[8] of free software allows more flexibility to
imagine original devices [9]. In the end,
researchers have no lock to study and increase the
common good.

10 Acknowledgements

Thanks to Laurent Pottier for his encouragement
and his pertinent advices.

References

[1] R. Rowe. 1993. Interactive Music Systems:

Machine Listening And Composing. MIT Press,
Cambridge.

[2] T. Hermann, A. Hunt, J. G. Neuhoff. 2011. The

Sonification Handbook, Logos Verlag, Berlin.

[3] J.-C. Risset, S. Van Duyne. 1996. Real-Time
Performance Interaction with a Computer-
Controlled Acoustic Piano. In Computer Music

Journal 20/1, pp. 62–75, MIT Press, Cambridge.

[4] B. Laurel. 2014, Second Edition. Computers as

Theatre. Addison-Wesley, Crawfordsville.

[5] L. Pottier. 2015. L’évolution des outils
technologiques pour la musique électronique, en
rapport avec la pérennité des œuvres. Constat,
propositions. A. Saemmer, editor, E-Formes 3,

Les frontières de l’œuvre numérique, pp. 245-
261, PUSE, Saint-Étienne.

[6] M. Puckette. 2002. Max at Seventeen. In
Computer Music Journal 26/4, pp. 31-43, MIT
Press, Cambridge.

[7] J. Szpirglas. 2012. Composer, même avec

trois bouts de ficelle… Entretien avec Philippe

Manoury. http://etincelle.ircam.fr/1077.10.html.

[8] S. Letz, S. Denoux, Y. Orlarey. 2014. Audio
Rendering/Processing and Control Ubiquity? a
Solution Built Using the Faust Dynamic
Compiler and JACK/NetJack. In Proceedings

ICMC|SMC, Athens.

[9] M. Lallement. 2015. L'âge du faire.

Hacking, travail, anarchie. Le Seuil, Paris.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 94

Higher Order Ambisonics for SuperCollider

Florian Grond
Input Device and

Music Interaction Laboratory, McGill
555, Sherbrooke W

H3A 1E3 Montreal CANDA,
floriangrond@gmail.com

Pierre Lecomte
LMSSC,

2 Rue Conté
75003 Paris,
FRANCE,

pierre.lecomte@gadz.org

Abstract

In this paper we present a library for 3D Higher Or-
der Ambisonics (HOA) for the SuperCollider (SC)
sound programming environment. The library con-
tains plugins for all standard operations in a typical
Ambisonics signal-flow: encoding, transforming and
decoding up to the 5th order. Carefully designed
PseudoUgens are the interface to those plugins to
aim for the best possible code flexibility and code
reusability. As a key feature, the implementation
is designed to handle the higher order B-format as
a channel array and to obey the channel expansion
paradigm in order to take advantage of the power-
ful scripting possibilities of SC. The design of the
library and its components is described in details.
Moreover, some examples are given for how to built
flexible HOA processing chains with the use of node
proxies.

Keywords

SuperCollider, Higher Order Ambisonics.

1 Introduction

Ambisonics, i.e. the description of sound pres-
sure fields through spherical harmonics decom-
position, has been around for quite a while since
its invention by [Gerzon, 1973]. Back in the
days, the harmonics decomposition was up to
the first order (First Order Ambisonics, FOA),
using the 4-channel B-format1 The playback of
FOA audio content depended on special hard-
ware and did not make it into mainstream au-
dio in the first decade of its existence for various
reasons, one of which being that FOA offers only
limited spatial resolution.

Ambisonics research made significant ad-
vances in the 2000’s through the work of Bam-
ford [Bamford, 1995], Malham [Malham, 1999]
and Daniel [Daniel, 2000], who extended the
sound pressure field decomposition to higher or-
ders hence the term (HOA). HOA increases the

1The term B-format is often used for FOA signals, in
this paper we use the term also for higher orders.

spatial resolution and thereby reduces the limi-
tation of low spatial definition when compared
with other spatialization techniques.

For streamlining and standardising content
production, one hurdle that HOA was facing in
the past was the coexistence of various channel
ordering and normalization conventions. In or-
der to address this issue, the Ambix standard
was proposed by [Nachbar et al., 2011] and is
ever since increasingly adopted by recent HOA
implementations.

Today, processors can handle with ease multi-
ple instances of multi-channel sound processes.
Further, the rise of video games and Virtual
Reality (VR) applications has elicited new in-
terest in Ambisonics amongst audio researchers
and content creators. This is mostly due to its
inherent property to yield easy-to-manipulate
isotropic 360 degree sound pressure fields, which
can be rendered either through multi loud-
speaker arrays or headphones. In the case of VR
applications head-tracking is already available
and the listener is always in the sweet spot. For
the capturing of HOA 3D sound pressure fields,
various microphone array prototypes have been
developed some of them being available as com-
mercial products like mhacoustic’s Eigenmike®

for instance. As far as multi loudspeaker re-
production is concerned, the number of loud-
speaker domes with semi spherical configura-
tions is growing and electroacoustic composers
have also shown increasing interest in HOA as a
spatialisation technique, notably amongst them
for composition and [Barrett, 2010] and sonifi-
cation [Barrett, 2016].

1.1 Ambisonics in various platforms

Over the last few years HOA has seen various
implementations in diverse sound software en-
vironments, mostly as plugins in DAWs. The
Ambisonics Studio plugins by Daniel Courville,
for instance, have been around for some time2.

2http://www.radio.uqam.ca/ambisonic

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 95

http://www.radio.uqam.ca/ambisonic

Another recent and very comprehensive exam-
ple its the Ambix plugin suite from [Kronlach-
ner, 2013] also see [Kronlachner, 2014a]. For
Pure Data and MaxMSP, HOA libraries have
been made available by the Centre de recherche
Informatique et Création Musicale3 an early im-
plementation can also be found with the ICST
Ambisonic tools [Schacher, 2010]. An early ver-
sion for Pure Data can be found in the collection
of abstractions called CubeMixer by [Musil et
al., 2003]. Recently, the HOA libraryAmbitools4

developed mainly in Faust has been made avail-
able [Lecomte and Gauthier, 2015].

1.2 SuperCollider

The audio synthesis environment SuperCollider
(SC) by [McCartney, 2002] is particularly well
suited for the creation of dynamic audio scenes.
SC is split into two parts: The server scsynth for
efficient sound synthesis and sclang, an object
oriented programming language for the flexible
configuration and re-patching of DSP trees on
the server. Similar to most sound programming
environments, synthesis is based in SC on unit
generators called Ugens. Third party Ugens are
collected separately in SC3plugins. Extensions
to sclang are mananged through Quarks. Ugens
can be assembled to more complex arrangements
through synthesis definitions, known as Syn-
thDefs, which are executable binaries for synthe-
sis in scsynth. In sclang, PseudoUgens can be
created, which is another way of handling com-
plex arrangements of Ugens in sclang, which are
compiled for scsynth, when needed. For a de-
tailed introduction to SC see [Valle, 2016] and
the SuperCollider book5 by [Wilson et al., 2011].

1.3 Ambisonics in SuperCollider

In 2005, Frauenberger et al. implemented HOA
in SC as the AmbIEM Quark6. This implemen-
tation goes up to the 3rd order, and follows the
old Furse Malham channel ordering and normal-
ization. All unit generators (Ugens) like en-
coding, rotation, and simple decoding are im-
plement in sclang as PseudoUgens. AmbIEM
comes with an simulation of early reflections in
a virtual room but lacks functionality such as
beamforming. The Ambisonics Toolkit (Atk)
for SC by [Anderson and Parmenter, 2012] is

3http://www.mshparisnord.fr/hoalibrary/en
4http://faust.grame.fr/news/2016/10/17/

Faust-Awards-2016.html
5http://supercolliderbook.net/
6https://github.com/supercollider-quarks/

AmbIEM

a more recent and very comprehensive set of
tools. The Atk includes for instance various
transformations to manipulate the directivity of
the sound field such as pushing and zooming. It
is however only a first order implementation of
Ambisonics.

1.4 Library design in SuperCollider

In this context the paper presents a modern
HOA implementation for SC, which is modular
and adopts all established standards in terms
of channel ordering and normalizations. In-
spired by the approach found in the Atk and
typical for the general design of SC, compu-
tationally intensive parts like Ugens are split
from PseudoUgens convenience wrapper classes
of sclang. The HOA library comes hence in three
parts, SC3plugins, PseudoUgens and audiocon-
tent plus HRTFs for binaural rendering in a sup-
port directory.

1.4.1 SC3plugins

The first part of the library is a collection of
Ugens, which is part of the SC3plugins collec-
tion. Each Ugen is compiled from C++ code.
It consists of a SC language side representation
of the Ugen as a .sc class file and a .scx, .so or
.dll compiled dynamic link library, for the plat-
forms (OSX, Linux or Windows) respectively.
For each Ambisonics order (so far up to order
5), there are individual Ugens for the encoding,
transforming and decoding processes in a typi-
cal Ambisonics signal flow. The C++ code for
these Ugens is generated from the HOA library
Ambitools [Lecomte and Gauthier, 2015] with
the compilation tool faust2supercollider. This
approach was taken for two reasons:

First, to leverage the work already accom-
plished in Faust. Indeed, the Faust compiler
generates very efficient DSP code and the Faust
code base allows to efficiently combine exist-
ing functionality. The meta approach through
Faust will lead to future additions of function-
ality, which can then be easily integrated in the
HOA library for SC.

Second, each Ambisonics order comes with a
defined multichannel B-format, this in turn de-
fines the amount of input and output arguments
for the Ugens. For instance, a Ugen rotating an
Ambisonic signal of order 3 has 16 input argu-
ments plus the rotation angles and 16 output
channels. While it is of interest to expose the
Ambisonics order as an argument for the flexibil-
ity and reusability of code on the side of sclang,
it is an argument unlikely to be changed while

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 96

http://www.mshparisnord.fr/hoalibrary/en
http://faust.grame.fr/news/2016/10/17/Faust-Awards-2016.html
http://faust.grame.fr/news/2016/10/17/Faust-Awards-2016.html
http://supercolliderbook.net/
https://github.com/supercollider-quarks/AmbIEM
https://github.com/supercollider-quarks/AmbIEM

Figure 1: The Ambisonics processing chain in
the HOA library for the selected order 3 with
16 channels.

an instance of the Ugen is running as a node in
the DSP tree on scsynth. This is why for every
order there is a unique Ugen for each function
(encoding, transforming, decoding).

The Ugens follow these conventions, some of
which are explained in subsequent sections):

• The Ambisonics channels are ordered ac-
cording to the ACN convention.

• The default normalisation of the B-format
is N3D.

• All azimuth and elevation arguments follow
the spherical coordinates convention from
SC.

• Operations of resource intensive Ugens can
by bypassed.

Based on the implementation in Faust, the
main functionalities of the HOA Ugens provided
as the SC3plugins are so far:

• Encoding and decoding of planar waves and
spherical waves using near field filters.

• Mirroring, Rotation (around azimuth and
full 3D).

• Various Ugens for beamforming, returning
mono as well as B-format signals.

• Various decoders in conjunction with Head-
Related Impulse Responses (HRIRs) for
binaural monitoring.

1.4.2 PseudoUgens

The second part of the library is available as
the sclang extension HOA Quark. While the
SC3plugins are designed for computational ef-
ficiency of the sound synthesis processes, The
HOA Quark is conceived to unlock the flexibil-
ity of making sound in SC with respect to code
reusability and the scaling of synthesis scripts.
Each typical operation in Ambisonics (Encod-
ing, Transforming, Decoding) is here provided
as a PseudoUgen. Depending on the Ambisonics
order provided as an argument, the PseudoUgen
returns and instantiates the correct Ugen from
the SC3plugins collection on the sound server.
Since the Ambisonics order is an argument for
the PseudoUgen, the number of channels in the
B-format vary and so does the number of in-
put arguments in the UGens. This is why the
B-format is handled as a channel array. This
makes the SC code flexible for experimenta-
tions with different orders depending on compu-
tational resources. All arguments of the Pseu-
doUgen obey the channel expansion paradigm.
This means that if any of the arguments is an
array (or an array of arrays), the PseudoUgen
returns an array (or an array of arrays) of Ugens.

Figure 1 shows the relation between the SC
language side (PseudoUgens in light grey) and
the SC3plugins (Ugens dark grey). If the Am-
bisonics order is set to 3 and passed as an argu-
ment to the PseudUgen, the corresponding Ugen
with 16 channels is returned and a typical pro-
cessing chain (Encoding Transforming Decod-
ing, encircled in red) can be established. The
main features of the design of the HOA library
implementation on the language side are:

• B-format is handled as a channel array.

• All arguments obey the channel expansion
paradigm.

This leads to the following advantage, when
scripting HOA sound scenes in SC. Compared
with graphical data flow programs like for in-
stance Pure Data, changing the order means to
reconnect all channels between objects interfac-
ing with the B-format. In SC changing the Am-
bisonics order in a single global variable changes
the order of the whole HOA processing chain.

1.4.3 Support directory

The third part of the library is a platform in-
dependent support directory for various HOA
sound file recordings and convolutions kernels
from HRIRs for the binaural rendering of HOA

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 97

sound scenes. The support directory approach
is similar to the Atk implementation from which
we adapted the corresponding class. The rea-
son to keep these resources separate from the
Quark directory is mostly due to the size of the
included sound files. We provide some 4th or-
der HOA sound files that have been recorded
with the Eigenmike® with the support of Ro-
main Dumoulin from CIRMMT. The HRIRs
provided are either measured from a KU-100
dummy head [Bernschuetz, 2013] or computed
from a 3D mesh scan of several people’s face.
The directions of the HRIRs follow a 50-node
Lebedev grid, allowing an Ambisonic binaural
rendering up to order 5 [Lecomte et al., 2016b].

2 Encoding

As the first step in an Ambisonics rendering
chain, the library provides PseudoUgens for en-
coding into the B-format. One for the encoding
of mono sound signals, one for microphone array
prototypes and one for the commercially avail-
able Eigenmike® microphone array.

2.1 HOAEncoder

This PseudoUgen creates an HOA scene from
mono inputs encoded as a (possibly moving)
sound source in space. The source can be en-
coded 1) as a plane wave with azimuth and
elevation (θp, δp) respectively 2) as a spherical
wave with position (rs, θs, δs), where rs is the
distance to origin of the source. The spherical
wave is encoded using near-field filters [Daniel,
2003]. In the current implementation, those fil-
ters are stabilized with near-field compensation
filters. Thus, in this case, the radius of the loud-
speaker layout rspk used for decoding is needed.
Note that if the spherical source radius is such
as the source is focused inside the loudspeaker
enclosure (rs ≤ rspk), a "bass-boost" effect may
occur with potential excessive loudspeaker gain.
This effect increases as the source get closer to
the origin [Daniel, 2003] [Lecomte and Gauthier,
2015].

HOAEncoder.ar(1,SinOsc.ar(f),a,e)
;

// returns
[OutputProxy ,..,.., OutputProxy]

HOAEncoder.ar(1,
SinOsc.ar([f1,f2]),
a,e); // returns

[[OutputProxy ,..,.., OutputProxy],
[OutputProxy ,..,.., OutputProxy]]

HOAEncoder.ar(1,
SinOsc.ar([f1,f2]),
a,e).sum;// returns

[OutputProxy ,..,.., OutputProxy]

If an array of azimuth and elevation argu-
ments, matching in size those of the source
SinOsc.ar([f1, f2]), flexible and scalable code
for multi source encoding can be created.

2.2 HOAEncLebedev06 / 26 / 50,
HOAEncEigenmike

This collection of PseudoUgen offers at first the
Discrete Spherical Fourier Transform (DSFT)
for various spherical layout of rigid spherical
microphone. In the current implementation
the proposed geometries are 06- 26- or 50-node
Lebedev grid [Lecomte et al., 2016b] and Eigen-
Mike grid[Elko et al., 2009]. The components of
the DSFT are then filtered to take into account
the diffraction by the rigid sphere and retrieve
the Ambisonic components [Moreau et al., 2006]
[Lecomte et al., 2015] The filters are applied by
setting the filter flag to 1 as shown in the next
code listing:

// Encode the signals from the
// Lebedev26 grid microphone
HOAEncLebedev26.loadRadialFilters

(s);
{HOAEncLebedev26.ar(4, SoundIn.ar

(0!26) , filters: 1)}.play

3 Converting

In order to correctly reconstruct a sound field
from the channels of the B-format, it is im-
portant to know about standard normaliza-
tion methods for the spherical harmonic com-
ponents, as well as channel ordering conven-
tions. Two main channel ordering conventions
exist: The original Furse-Malham (FuMa) [Mal-
ham, 1999] higher-order format, an extension
of traditional first order B-format up to third
order (16 channels). FuMa channel ordering
comes with maxN normalization, which guaran-
tee maximum amplitude of 1. The FuMa format
has been widely used and is still in use but is
increasingly replaced by the Ambisonic Channel
Number (ACN) ordering [Nachbar et al., 2011].
ACN typically comes with (the full three-D nor-
malisation) where all signals are orthonormal.
SN3D (Semi-Normalized 3D) spherical harmon-
ics. This normalization has the advantage that

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 98

none of the higher order signals exceeds the level
of the first Ambisonic channel, W (ACN 0).

However, this normalization does not provide
an orthonormal basis of spherical harmonics and
this latter case is recommended for transforma-
tions which rely on the orthormality property of
spherical harmonics. Therefore, the library uses
internally the N3D (full 3D normalization) with
ACN convention.

3.1 HOAConvert

The HOAConvert PseudoUgen accepts a B-
format array as input and converts from and
to ACN_N3D, ACN_SN3D, FuMa_MaxN. It
is mostly meant to convert existing B-format
recordings into ACN N3D for use within the li-
brary The other use case is to render B-format
mixes to other conventions for other production
contexts.

4 Transforming

In its current implementation, the HOA library
provides 3 standard operations like rotation and
mirroring to transform the B-format.

4.1 HOAAzimuthRotator

This PseudoUgen rotates the HOA scene around
the z-axis, which is accomplished with a rota-
tion matrix in x and y due to the symmetry in z
of the spherical harmonics. For the matrix def-
inition see [Kronlachner, 2014b]. In combina-
tion with horizontal head tracking, this trans-
formation can stabilise horizontal auditory cues
for left-right movements when the rendering is
made over headphones in VR contexts.

4.2 HOAMirror

This PseudoUgen mirrors an HOA scene at the
origin in the directions along the axes left-right
(y), front-back (x), up-down(z). According to
[Kronlachner, 2014b], this can be accomplished
by changing a the sign of selected spherical har-
monics.

4.3 HOARotatorXYZ

This PseudoUgen rotates a HOA scene around
any given angle around x,y,z. The rotation ma-
trix is computed in spherical harmonic domains
using recurrence formulas [Ivanic and Rueden-
berg, 1996].

5 Beamforming

5.1 HOAHCard2Mono

This PseudoUgen extract a mono signal from
the HOA scene according to a beampatern. The

channels from the B-format inputs are combined
to produce a monophonic output as if a direc-
tional microphone was used to listen into a spe-
cific direction in the sound field. In the current
implementation, the beampatern provided are
regular hypercardioids up to order 5 see [Meyer
and Elko, 2002]

5.2 HOAHCard2HOA

This PseudoUgen applies a hyper-cardioid
beam-pattern to the HOA scene to enhance
some directions and outputs a directional fil-
tered HOA scene [Lecomte et al., 2016a].
The proposed beam-patterns are regular hyper-
cardioids as described in [Meyer and Elko, 2002].
The selectivity of the directional filtering in-
creases with the order of the beam-pattern. This
transformation requires an order re-expansion
such that the output HOA scene should be of
the order of the input HOA scene plus the beam-
pattern order [Lecomte et al., 2016a].

5.3 HOADirac2HOA

As in the previous section, this PseudoUgens
performs a directional filtering on the HOA
scene but this time the beam-pattern is a di-
rectional Dirac, that is to say a function which
is zero everywhere except in the chosen direc-
tion. As a result the output HOA scene contains
only the sound from the chosen direction. Thus,
this tools helps to explore the HOA scene with
a "laser beam". For more details see [Lecomte
et al., 2016a].

6 Decoding

For the decoding of HOA signals two different
ways of rendering the sound field are possible:
First via headphones, or second through a setup
of multiple loudspeakers.

For the headphone option the HOA signal is
decoded to spherically distributed virtual speak-
ers. For the best possible spatial resolution more
speakers are needed then there are channels in
the B-format. Each speaker signal is then con-
volved with HRTFs and the resulting left and
right channels are summed respectively. For the
distribution of the virtual speakers a regular dis-
tribution on the sphere is desirable, so that the
decoding matrix is well behaved. This is why
according to [Lecomte et al., 2015] and similar
to the microphone array prototypes from above
a Lebedev grid is chosen.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 99

6.1 HOADecLebedev06 / 26 / 50

This collection of PseudoUgen decodes an Am-
bisonics signal up to 50 virtual speakers posi-
tioned as nodes on a Lebedev grid. The decod-
ing on the 50-node Lebedev grid works up to
order 5. This grids contains two several nested
sub-grids which work up to lower order with less
nodes[Lecomte et al., 2016b]. Therefore, the 6
first nodes are sufficient for first order and the
26 first nodes are sufficient up to the third order.
If the HRTF filter flag is set to 1, the signals are
convolved with the kernels and summed up to
yield a left and right headphone speaker signal.
Prior to this, the convolution kernels need to be
loaded to the sound server as shown in the next
code listing:

// load a HOA sound file
~file=Buffer.read(s,"hoa3O.wav");
// prepare binaural filters
HOADecLebedev26.loadHrirFilters ()
{HOADecLebedev26.ar(3,//order 3

PlayBuf.ar(16,~file ,1,loop :1),
hrir_Filters :1)

}.play;

6.2 HOADec

For the case of decoding for speaker arrays
[Heller et al., 2008] distinguish 3 cases:

1. regular polygons (square, octagon) and
polyhedra (cube, octahedron)

2. semiregular arrays (non equidistant but op-
posing speakers, like in a shoebox)

3. general irregular arrays (e.g. ITU 5.1, 7.1
... semispherical speaker domes)

For the cases 1 and 2, decoder matrices can
be obtained by matrix inversion. If, depend-
ing on the positions of the speakers, the result-
ing decoder matrix has elements are of similar
magnitudes, it is suitable for signal processing.
For case 3, which are arguably the more realistic
cases, a variety of state of the art techniques ex-
ists, see for instance [Zotter et al., 2012], [Zotter
et al., 2010], and [Zotter and Frank, 2012]. An
implememtation of these techniques exceeds the
scope of this library. However, for the construc-
tion of decoders for specific irregular speaker
arrays, we refer the user to the Ambisonic De-
coder Toolbox by Aaron J. Heller7. This toolbox
produces decoders as Faust files, which can be

7https://bitbucket.org/ambidecodertoolbox/
adt.git

compiled online8 as Ugens and in turn can then
be integrated in the HOADec PseudoUgen class
template.

7 The distance of sound sources

One novel aspect of the underlying Faust impl-
mentation of Ambitools is the spherical encod-
ing of sound sources using near field filters. For
the correct reproduction of the HOA scene, the
distance of the sound source and the radius of
the reproducing (virtual) speaker array needs to
be set. The correct near field filters are either
applied by setting it in the encoding or in the
decoding step.

// load the binaural filters
HOADecLebedev26.loadHrirFilters ()
{ var src;
src=HOAEncoder.ar(

3,//order
PinkNoise.ar(0.1),// source
az,// azimuth
ele ,// elevation
plane_spherical :1,
radius:2,

// set the speaker radius here
speaker_radius :1)

HOADecLebedev26.ar(
3,//order
src ,// source

// or set the speaker radius here
// speaker_radius :1,

hrir_Filters :1)
}.play;

8 HOA and SynthDefs

The use of PseudoUgens leads to one important
caveat when working with SynthDefs. The Am-
bisonics order is an argument pertaining to the
PseudoUgen, it can hence not be an argument
of a SynthDef. The reason is that at compile
time the Ambisonics order would remain unde-
fined and the PseudoUgen does hence not know
which Ugen to return When working with Syn-
thDefs code reusability can still be achieved as
shown in the next code listing:

// set the max order:
~order = 5;
~order.do({|i| // iterate
SynthDef(// create unique names
"hoaSin"++(i+1).asString ,

8http://faust.grame.fr/onlinecompiler/

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 100

https://bitbucket.org/ambidecodertoolbox/adt.git
https://bitbucket.org/ambidecodertoolbox/adt.git
http://faust.grame.fr/onlinecompiler/

{Out.ar(0,
HOAEncoder.ar(
i+1,// increase the order
SinOsc.ar()))},

).add;
})
// play the Synths
Synth(\hoaSin1);
...
Synth(\hoaSin5);

9 HOA and Node Proxies

For the flexible creation of typical Ambisonics
render chains, Node Proxies [Rohrhuber and de-
Campo, 2011] provide an excellent tool in SC.
Node Proxies autonomously handle audio busses
and conveniently allow to crossfade between au-
dio processes of a selected node, freeing silent
process when the crossfade is completed. This
allows to dynamically change sources in the en-
coding, transforming and decoding step in the
rendering chain. The following code example
shows a flexible scenario with changing seam-
lessly from an XYZ rotation to beamforming.

~o=3;
~chn=(~order +1).pow(2);
// load hoa sound file:
~bf=Buffer.read(s,"file.wav");

// b-format file player:
~player=NodeProxy(s,\audio ,~chn);
~player.source=

{PlayBuf.ar(~chn ,~bf)};

// Node for xyz rotation:
~trans=NodeProxy(s,\audio ,~chn);
~trans.source=

{var in;in=\in.ar (0!16)
HOATransRotateXYZ.ar(

~o,in,
yaw ,pitch ,roll)};

// rotate the scene
~trans.set(\yaw , angle);

// decoding ,
~dec=NodeProxy(s,\audio ,~chn);
~dec.source=

{var in;in=\in.ar (0!16)
HOADec.ar(~o,in ,)};

// chain the proxies together
~player <>> ~trans <>> ~dec;

// change rotation to beamforming

~trans.source=
{var in;in=\in.ar (0!16)
HOABeamDirac2Hoa.ar(

~o,in,
az,ele)};

// direct the beam
~trans.set(\az , angle);

10 Conclusions

We have presented a HOA library for SC. The
design of which resulted in great flexibility and
makes it a valuable addition to experiment with
HOA in various contexts. Due to the meta ap-
proach through Faust, future additions to the
library are feasible and we look forward to ex-
periment with it in the context of VR and
video gaming platforms but also for the creation
of sound material for electro acoustic composi-
tions. We believe that the flexibility and live
coding capacity of SC is particularly useful in
the context of HOA, where repeated listening
is essential to asses the perceptually complex
mutual interdependence of temporal and spatial
sound characteristics.

11 Acknowledgements

This work has been supported through the
research-creation funding program of the Fonds
de Recherche du Québec - Société et Culture
(FRQSC).

References

J. Anderson and J. Parmenter. 2012. 3D
sound with the Ambisonic Toolkit. In Pre-
sented at the Audio Engineering Society 25th
UK Conference / 4th International Sympo-
sium on Ambisonics and Spherical Acoustics,
York.

Jeffrey S. Bamford. 1995. An Analysis of Am-
bisonic Sound Systems of First and Second
Order. Ph.D. thesis, University of Waterloo,
Waterloo.

Natasha Barrett. 2010. Ambisonics and
acousmatic space: a composer’s framework
for investigating spatial ontology. In Proceed-
ings of the Sixth Electroacoustic Music Studies
Network Conference Shanghai, 21-24 June.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 101

Natasha Barrett. 2016. Interactive Spatial
Sonification of Multidimensional Data for
Composition and Auditory Display. Com-
puter Music Journal, 40(2):47–69.

B. Bernschuetz. 2013. A spherical far field
hrir/hrtf compilation of the neumann ku 100.
In in Proceedings of the 40th Italian (AIA)
Annual Conference on Acoustics and the
39th German Annual Conference on Acous-
tics (DAGA), page 29.

J. Daniel. 2000. Représentation de Champs
Acoustiques, Application à la Transmission et
à la Reproduction de Scènes Sonores Com-
plexes dans un Contexte Multimédia, Ph.D.
Thesis. Ph.D. thesis, University of Paris 6,
Paris, France.

Jerome Daniel. 2003. Spatial sound encod-
ing including near field effect: Introducing
distance coding filters and a viable, new am-
bisonic format. In In Audio Engineering So-
ciety Conference: 23rd International Con-
ference: Signal Processing in Audio Record-
ing and Reproduction, pages 1–15, Helsingor.
AES.

G. Elko, R. A. Kubli, and J. Meyer. 2009.
Audio system based on at least second-order
eigenbeams.

Michael A. Gerzon. 1973. Periphony: With-
height sound reproduction. Journal of the Au-
dio Engineering Society, 21(1):2–10.

Aaron J. Heller, Richard Lee, and Eric M.
Benjamin. 2008. Is My Decoder Ambisonic?
In the 125th Convention of the Audio Engi-
neering Society, San Francisco, oct. 1-5.

J. Ivanic and K. Ruedenberg. 1996. Rotation
matrices for real spherical harmonics. Direct
determination by recursion. J. Phys. Chem.,
100(15):6342–6347.

M. Kronlachner. 2013. Ambisonics plug-in
suite for production and performance usage.
In LAC, Graz, Austria, May.

M. Kronlachner. 2014a. Plug-in Suite for
Mastering the Production and Playback in
Surround Sound and Ambisonics. In AES
Student Design Competition (Gold Award),
Berlin, April.

M Kronlachner. 2014b. Spatial transforma-
tions for the alteration of ambisonic record-
ings. Graz University Of Technology, Austria.

P. Lecomte and P.-A. Gauthier. 2015. Real-
Time 3D Ambisonics using Faust, Process-
ing, Pure Data, And OSC. In In 15th Inter-
national Conference on Digital Audio Effects
(DAFx-15), Trondheim, Norway.

P. Lecomte, P.-A. Gauthier, C. Langrenne,
A. Garcia, and A. Berry. 2015. On the use
of a Lebedev grid for Ambisonics. In in Au-
dio Engineering Society Convention 139.

P. Lecomte, P.-A. Gauthier, C. Langrenne,
A. Berry, and A. Garcia. 2016a. Filtrage
directionnel dans un scène sonore 3D par
une utilisation conjointe de Beamforming
et d’Ambisonie d’ordre elevés. in CFA /
VISHNO 2016, pages 169–175.

Pierre Lecomte, Philippe-Aubert Gauthier,
Christophe Langrenne, Alain Berry, and
Alexandre Garcia. 2016b. A fifty-node lebe-
dev grid and its applications to ambison-
ics. Journal of the Audio Engineering Society,
64(11):868–881.

D.G. Malham. 1999. Higher order ambisonic
systems for the spatialisation of sound. In
ICMC99, pages 1–4, Beijing. ICMC.

J. McCartney. 2002. Rethinking the Com-
puter Music Language: SuperCollider. Com-
puter Music Journal, 26(4):61–68.

J. Meyer and G. Elko. 2002. A highly scal-
able spherical microphone array based on an
orthonormal decomposition of the soundfield.
in IEEE International Conference on Acous-
tics, Speech, and Signal Processing, 2:1781–
1784.

S. Moreau, J. Daniel, and S. Bertet. 2006.
3d sound field recording with higher order
ambisonics-objective measurements and val-
idation of spherical microphone. In in Audio
Engineering Society Convention 120, pages 1
– 24.

T. Musil, J. Zmoelnig, M. Noisternig, A. Son-
tacchi, and R. Hoeldrich. 2003. AMBISONIC
3D Beschallungssystem 5.Ordnung fuer PD.
Report 15, Institute for Elektronic Music and
Acoustics.

Christian Nachbar, Franz Zotter, Etienne
Deleflie, and Alois Sontacchi. 2011. AMBIX -
a suggested ambisonics format. In Ambisonics
Symposium, Lexington, KY, June 2-3.

Julian Rohrhuber and Alberto deCampo,
2011. The SuperCollider Book, chapter Just

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 102

in Time Programming (ch 7) . MIT Press,
MA: Cambridge.

Jan C. Schacher. 2010. Seven Years of ICST
Ambisonics Tools for MAXMsp - a Brief Re-
port. In Proc. of the 2nd International Sympo-
sium on Ambisonics and Spherical Acoustics,
Paris, France, May 6 - 7.

Andrea Valle. 2016. Introduction to SuperCol-
lider. Logos Publishing House.

S. Wilson, D. Cottle, and N. Collins, editors.
2011. The SuperCollider Book. MIT Press,
MA: Cambridge.

F. Zotter and M. Frank. 2012. All-Round Am-
bisonic Panning and Decoding. J. Audio Eng
Soc, 60(10):807–820, Nov.

F. Zotter, M. Frank, and A. Sontacchi.
2010. The virtual t-design ambisonics-rig us-
ing vbap. In presented at the 1st EAA-
EuoRegio 2010 Congress on Sound and Vi-
bration, pages 1 – 4, Ljubljana, Slovenia.

F. Zotter, H. Pomberger, and M. Noisternig.
2012. Energy-Preserving Ambisonic Decod-
ing. Acta Acoustica united with Acoustica,
98:37 – 47.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 103

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 104

STatic (LLVM) Object Analysis Tool: Stoat

Mark McCurry
Georgia Tech

United States of America
mark.d.mccurry@gmail.com

Abstract

Stoat is a tool which identifies realtime safety haz-

ards. The primary use is to analyze programs which

need to perform hard realtime operations in a por-

tion of a mixed codebase. Stoat traverses the call-

graph of a program to identify which functions can

be called from a root set of functions which are ex-

pected to be realtime. If any unsafe function which

could block for an unacceptable amount of time is

found in the set of functions called by a realtime

function, then an error is emitted to indicate where

the improper behavior can be found and what back-

trace is responsible for its call.

Keywords

Realtime safety, static analysis, LLVM

1 Motivation

When using low latency audio tools an all too
common problem encountered by users is au-
dio dropout caused by an excessive run time
of the audio generation or processing routine.
This artifact is also commonly known as an
xrun. Xruns can be generated when there’s sim-
ply too much to calculate during the allocated
time, but it can also be easily generated by any
function which takes an unreasonable amount
of real time to execute1. The latter category of
functions typically include operations involving
dynamic memory, inter-process communication,
file IO, and threading locks.
For low latency audio to reliably work, a

frame of audio and midi data must be processed
within a short fixed time window. Audio call-
backs are then known as functions bound by a
real time constraint, or realtime for short. A
large portion of code can have it’s total exe-
cution time bounded when the size of data is
known in advance. Some code however cannot
be simply bounded. As a simple example, con-
sider prompting the user for synthesis parame-

1as opposed to cpu time

ters and waiting for a response. The user could
enter a response quickly or they could never pro-
vide a response. The class of functions which
aren’t bounded by the real time constraint, that
a realtime program operates with, are known as
non-realtime.
To avoid xruns, realtime programs should be

composed of functions with reasonable realtime
bounds, and thus non-realtime functions are un-
safe for a reliable program. Typically realtime
system programmers acknowledge the timing
constraint and design systems with this limita-
tion in mind. Simple tests may be used to iden-
tify the typical execution times as well as vari-
ance, though it’s easy for bugs to creep in. In
particular, the C or C++ open source projects
in Linux audio frequently have architectural is-
sues making realtime use unreliable2.
Maintaining a large codebase in C or C++

can make it very difficult to both know what a
given function can end up calling or when a par-
ticular function could be called. Typically prob-
lems start with a mixed realtime/non-realtime
system, such as UI and DSP sections of code;
the segregation within one codebase may not be
at all clear in implementation. This is further
complicated by the opaqueness of some C++
techniques, such as virtual overloading, opera-
tor overloading, multiple inheritance, and im-
plicit conversions. Overall these complications
make manual verification of large scale realtime
programs difficult.
Stoat offers a solution to identifying realtime

hazards through an easy-to-use static analy-
sis approach. Static analysis makes it possible
to identify when functions claimed to be real-
time can call unsafe non-realtime functions even
when complex C or C++ call graphs are in-
volved. The approach offered by Stoat makes it
easy to identify these programming errors which
can be used to greatly improve the reliability of

2see appendix A

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 105

low latency tools.

1.1 Prior Art

Stoat isn’t the first tool to address the prob-
lem of identifying these realtime safety haz-
ards. Several years prior to the creation of
Stoat, Arnout Engelen created jack-interposer
which is a runtime realtime safety checker
[Engelen, 2012]. Jack-interposer works by
causing a program to abort if within the
JACK process callback any known unsafe non-
realtime function is called. The functions which
jack-interposer identifies as unsafe include,
IO functions (vprintf(), and vfprintf()),
polling functions (select(), poll()), interpro-
cess communication (wait()), dynamic mem-
ory functions (malloc(), realloc(), free()),
threading functions (pthread mutex lock(),
pthread join()), and sleep().

As a runtime analysis tool jack-interposer re-
quires the program to be executed to identify
errors and each error is reported as it’s en-
countered. Individual errors are presented by a
message without a backtrace or by halting the
program and allowing a developer to use a de-
bugger. Jack-interposer has the same issue as
other runtime tools compared to static analysis.
Namely, exhaustive testing requires the user or
testing script to run the program through all
states which involve different logic. Doing so is
a difficult, error prone, and tedious task. Ad-
ditionally, jack-interposer was designed to only
be used with JACK clients, while Stoat works
with any program, JACK based or not.
Stoat is based of an earlier attempt at

creating another more general static analysis
tool. The predecessor project, Static Func-
tion Property Verifier, or SFPV, attempted to
address more general problem of tracking de-
scribed properties through a programs feasi-
ble call graph [McCurry, 2014]. SFPV used
the Clang compiler’s API to record precise
source level information [Lattner, 2008]. Un-
fortunately the Clang API was subject to rapid
breaking changes, slow to compile, and vastly
underdocumented, so SFPV was rewritten to
create Stoat. Stoat in comparison uses a limited
subset of the LLVM API without interfacing di-
rectly with Clang.

2 Examples

Both runtime and static analysis tools, includ-
ing jack-interposer and Stoat, attempt to ad-
dress the same overall problem. Both aim at

detecting when a function which can be exe-
cuted in a realtime thread can call a function
which may block for an unacceptable amount
of time. In C, an example of this is is shown in
listing 1. root fn() can call malloc() through
two intermediate functions, unannotated fn()
and unsafe fn(). When Stoat is provided with
an out-of-source annotation on root fn() it can
then use the call graph to deduce that an unsafe
function can be called.

Listing 1: Example C Program

void r o o t f n (void) {
unannotated fn () ;

}
void unannotated fn (void) {

un sa f e f n () ;
}
void un sa f e f n (void) {

malloc (1 0) ;
}

For a C program many call graphs are rela-
tively simple and no complex type information
is needed. C++ call graphs however make ex-
tensive use of operator overloading, templates,
and class based inheritance. Listing 2 shows
an example of the root fn() calling a method
which may or may not be safe based upon which
implementation of method() is called. As the
class hierarchy is available to Stoat, the root
function can be conservatively marked as unsafe
as method() would call malloc() if Obj was an
instance of the Unsafe class. Depending upon
the workload of a particular program, this data
dependency might be satisfied very rarely, so a
purely runtime based approach may not identify
the error.

Listing 2: Example C++ Program

void r o o t f n (Obj ∗o) {
o−>method () ;

}
c l a s s Unsafe : pub l i c Obj {

v i r t u a l void method (void) {
malloc (1 0) ;

}
} ;

3 Stoat Implementation

Stoat consists of several components. First,
there is a compiler shim to dump LLVM based
metadata though LLVM IR files. Second, there
is a series of LLVM compiler passes to extract

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 106

inline annotations and call graph information.
Last, there is a ruby frontend to perform deduc-
tions on the extracted call graph and to produce
diagnostic messages and diagrams.
Stoat uses information present in LLVM

bitcode to capture the program’s call struc-
ture. Generating bitcode for individual files
can be difficult to integrate with complex
software projects’ build systems. A similar
issue was presented by Clang’s official static
analysis tools [Kremenek, 2008]. Their solution
was to have a stand-in which replaces the
normal C/C++ compiler3. Stoat offers two
compiler proxy binaries, stoat-compile and
stoat-compile++, which provide a way to
simplify generating LLVM bitcode similar
to Clang’s scan-build toolchain. For an au-
totool based project analysing source code
is as simple as running CC=stoat-compile
CXX=stoat-compile++ ./configure && make
and then running stoat -r ..

For each LLVM bitcode file Stoat runs four
custom LLVM passes. These passes respectively
identify: the function calls, or call graph within
the program; the C++ virtual methods associ-
ated in each class; the C++ class hierarchy; and
in-source realtime safety annotations.
First the call graph is constructed. Within

the LLVM IR the Call and Invoke operations
call another function and they contain meta-
data about what function is being called. For
C functions this is relatively simple. Consider
the IR associated with void foo(){bar()} in
listing 3.

Listing 3: LLVM IR For C Call

de f i n e void @foo () #0 {
entry :

c a l l void @bar ()
r e t void

}

For C++, extracting the call graph is some-
what more complex due to the introduction of
virtual methods. Virtual methods are a struc-
tured version of function pointers calls and they
can be identified by the two-step process to ob-
tain the function pointer. First, a class instance
is converted to the virtual function table, or
vtable. Then, the method’s ID is used to ex-
tract the method from the vtable and the re-
sulting function pointer is called. The LLVM

3http://clang-analyzer.llvm.org/scan-build.
html

IR for a virtual call is shown in listing 5 and it
corresponds to the source shown in listing 4.

Listing 4: C++ Call

void foo (void) {
Baz ∗baz ;
baz−>bar () ;

}

Listing 5: LLVM IR For C++ Call

de f i n e void @ Z3foov () #0 {
entry :
%baz = a l l o c a %c l a s s . Baz∗ , a l i g n 4
%0 = load %c l a s s . Baz∗∗ %baz ,

a l i g n 4
%1 = b i t c a s t %c l a s s . Baz∗ %0 to

void (%c l a s s . Baz∗)∗∗∗
%vtab l e =

load void (%c l a s s . Baz∗)∗∗∗ %1
%vfn = gete l ementptr inbounds

void (%c l a s s . Baz∗)∗∗ %vtable ,
i 64 0

%2 = load void (%c l a s s . Baz∗)∗∗ %vfn
c a l l void %2(%c l a s s . Baz∗ %0)
r e t void

}

Next the vtable calls need to be mapped back
to real functions. Vtables are stored as a global
symbols and can be identified by the “ ZTV”
prefix used in normal C++ symbol mangling
procedures. The class hierarchy can be re-
constructed by identifying chained constructors
from class to class.
With the information presented by the nor-

mal call graph and the C++ virtual methods
an augmented call graph can be constructed.
First, any vtable methods are assumed to call
any method implementation of the base class or
any child class. Then, suppression file entries
are used to remove edges from the augmented
call graph to avoid false errors typically seen in
error handling.
The last LLVM pass looks for in-

source safety annotations in the form of
attribute ((annotate("realtime"))) and
attribute ((annotate("non-realtime"))).

These annotations can be added to the end of
a function declaration to add metadata to the
function within the C or C++ source. The
annotations are augmented with out-of-source
annotations in the form of whitelist and
blacklist files.
Once the augmented call graph is constructed

and a subset of the functions in the program

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 107

http://clang-analyzer.llvm.org/scan-build.html
http://clang-analyzer.llvm.org/scan-build.html

are annotated, a series of deductions can be
made. Any function which is called, but never
implemented is assumed to be non-realtime if
not specified otherwise. Any function which is
unannotated and called by a realtime function
is assumed to be realtime. Any function which
is realtime or assumed realtime that calls a non-
realtime function produces an error with an as-
sociated deduction chain.
The errors can be presented in either a textual

or graphical form. The current format includes
the function that calls the unsafe function along
with the deduced path. An example of an error
flagged by Stoat is dynamic memory use within
jalv when it is in a debug mode.

Error #514:
serd_stack_new
##The Deduction Chain:
- serd_writer_new : Deduced Realtime
- sratom_to_turtle : Deduced Realtime
- jack_process_cb : Realtime (Annotation)
##The Contradiction Reasons:
- malloc : NonRealtime (Blacklist)

Alternatively, figure 1 shows a partial view of
a graphical representation of call graph nodes
involved in errors. When dealing with a legacy
codebase the graphical representation tends to
be preferable as it visually shows which routines
contain the most errors, and which errors are
the most common. Additionally, for C++ code-
bases who’s error involve long template expan-
sions the graphical representation shortens the
displayed names to result in a still large, but
more manageable view on the software’s archi-
tecture.

Figure 1: Partial output from Stoat applied to
ZynAddSubFX 2.5.04

4http://fundamental-code.com/2.5.
0-realtime-issues.png

3.1 Limitations

Stoat offers a number of improvements over
prior art, though Stoat does have its limitations.
Namely, Stoat doesn’t track data dependencies5

on realtime safety. This task is one where run-
time analysis tools, such as jack-interposer, can
identify errors which Stoat isn’t able to find or
avoid false positives.
Two primary data dependent issues which

produce misleading results include the use of
unsafe function pointers and the use of unsafe
error handling code. A short example of the
former would be:

Listing 6: Function pointer call

void func t i on (void (∗ fn) (void)) {
fn ()

}

If and only if function() is only passed real-
time functions, then it is a realtime safe func-
tion, but the data passed into the function isn’t
analysed by Stoat, so function pointer calls are
typically overlooked.
Debug and error handling code is a common

source of false positives and the example error
from jalv shows one such example. In listing 7,
function() would be marked unsafe. The un-
safe function should never be called in practical
use and a runtime checker would not flag this
case. A similar class of issues can occur if a
function has different realtime safe behavior de-
pending upon a flag passed to the function as
may be the case with codebases which do not
have separate functions for realtime and non-
realtime tasks.

Listing 7: Example error handling

void func t i on (void) {
i f (f a t a l e r r o r)

c a l l u n s a f e f u n c t i o n () ;
}

3.2 Discussion

Stoat and it’s predecessor, SFPV, were origi-
nally created as a tool to assist with finding is-
sues within the ZynAddSubFX synthesizer6 and
bringing it into compliance with realtime safety
issues. While minor issues still exist, several
users have reported improved reliability at lower
latencies compared to earlier versions. Stoat has

5this includes any conditional code execution based
upon constant or non-constant data

6http://zynaddsubfx.sf.net/

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 108

http://fundamental-code.com/2.5.0-realtime-issues.png
http://fundamental-code.com/2.5.0-realtime-issues.png
http://zynaddsubfx.sf.net/

since been used as a verification tool in: libr-
tosc7, carla8, ingen9, and jalv10. Ideally it will
be used on more projects within Linux Audio to
identify realtime hazards in the future. The use
of Stoat or jack-interposer would assist in cor-
recting the poor user experience and possibly
a negative reputation for stability that realtime
hazards have created in a variety of realtime
projects.
When Stoat doesn’t understand regular

structure within a program it is relatively easy
to extend. ZynAddSubFX uses roughly 500
callbacks through librtosc. Stoat has already
been extended to automatically annotate these
callbacks As mentioned in the limitations, func-
tion pointers are difficult to reliably track with
static analysis, librtosc callbacks however have
per callback metadata which can be used to as-
sociate a statically known function pointer with
information which can be used to identify which
ones are expected to be executed in the realtime
environment. This process was tested in Zy-
nAddSubFX and used to resolve several bugs.

4 Conclusion

Stoat offers a new method to inspect exist-
ing software projects and direct attention to-
wards code which may be responsible for real-
time hazards. Addressing these realtime haz-
ards can improve the experience within a va-
riety of Linux audio applications and plugins.
Through the use of automated tools such as
Stoat realtime hazards can be identified and
corrected quickly. Additionally, the static anal-
ysis approach of Stoat complements the prior
art of runtime analysis that projects like jack-
interposer provide. Stoat is available at https:
//github.com/fundamental/stoat under the
GPLv3 license.

References

Arnout Engelen. 2012. Jack interposer.
https://github.com/raboof/jack_
interposer.

Ted Kremenek. 2008. Finding software bugs
with the clang static analyzer. Apple Inc.

Chris Lattner and Vikram Adve. 2004.
LLVM: A compilation framework for life-

7http://github.com/fundamental/rtosc
8http://kxstudio.linuxaudio.org/Applications:

Carla
9https://drobilla.net/software/ingen

10http://drobilla.net/software/jalv

long program analysis and transformation. In
CGO, pages 75–88, San Jose, CA, USA, Mar.

Chris Lattner. 2008. Llvm and clang: Next
generation compiler technology. In The BSD
Conference, pages 1–2.

Mark McCurry. 2014. Static function prop-
erty verification: sfpv. https://github.
com/fundamental/sfpv.

A Brief Survey of Realtime Safety

In order to validate the claim that “projects in
Linux audio frequently have architectural issues
making realtime use unreliable”, a survey was
conducted on a sampling of Linux synthesiz-
ers. Each synthesizer as presented by http://
www.linuxsynths.com/ was given a brief man-
ual code review (typically < 15 minutes per
project) looking for common realtime safety vi-
olations. If source code was not available or
could not be located for a code review then the
project was excluded. Projects marked with a
‘*’ have had an in depth code review prior to
the writing of this paper. The results shown in
table 1 show that 18 of 40 projects (or 45%)
have some easy to identify realtime safety issue.
Outside of LMMS and ZynAddSubFX the re-

altime hazards within each project has not re-
ceived additional verification. Based upon expe-
rience working with projects not included in this
list, additional realtime hazards are expected to
be observed when tools like jack-interposer or
Stoat are applied.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 109

https://github.com/fundamental/stoat
https://github.com/fundamental/stoat
https://github.com/raboof/jack_interposer
https://github.com/raboof/jack_interposer
http://github.com/fundamental/rtosc
http://kxstudio.linuxaudio.org/Applications:Carla
http://kxstudio.linuxaudio.org/Applications:Carla
https://drobilla.net/software/ingen
http://drobilla.net/software/jalv
https://github.com/fundamental/sfpv
https://github.com/fundamental/sfpv
http://www.linuxsynths.com/
http://www.linuxsynths.com/

Table 1: Linux Synthesizer Realtime Safety Observations

Software Name Observed Status Notes
6PM likely unsafe appears to launch threads within rt-thread
Add64 likely unsafe blocking gui communication in rt-thread
Alsa Modular Synth likely unsafe unsafe data mutex
amSynth likely unsafe unsafe memory allocation in rt-thread
Borderlands likely unsafe unsafe locks/memory allocation in rt-thread
Bristol likely safe appears safe
Calf tools likely safe appears safe
Cellular Automaton Synth likely safe appears safe
Dexed likely unsafe unsafe memory allocations in rt-thread
DX-10 likely safe appears safe
Helm likely unsafe memory allocation in rt-thread/addProcessor()
Hexter likely safe appears safe
JX-10 likely safe appears safe
LB-302 likely unsafe see LMMS
LMMS* unsafe unsafe locks in rt-thread, unsafe memory allo-

cation in rt-thread, creation of threads in rt-
thread, blocking communication to user inter-
face in rt-thread, etc

Monstro likely unsafe see LMMS
Mr. Alias 2 likely safe appears safe
Mx44 likely safe appears safe
Nekobee likely safe appears safe
Newtonator likely safe appears safe
OBXD likely safe appears safe
Organic likely unsafe see LMMS
Oxe FM Synth likely safe appears safe
Peggy2000 likely safe appears safe
Petri-Foo likely safe appears safe
Phasex likely safe appears safe
Samplev1 likely unsafe possible memory allocation in rt-thread
SetBFree likely safe appears safe
Sineshaper likely safe appears safe
Sorcer likely safe appears safe
Synthv1 likely unsafe possible memory allocation in rt-thread
Triceratops likely safe appears safe
Triple Oscillator likely unsafe see LMMS
Tunefish 4 likely safe appears safe
Vex likely safe appears safe
Watsyn likely unsafe see LMMS
WhySynth likely safe appears safe
Wolpertinger likely unsafe unsafe memory allocation in setParameter()
Xsynth likely unsafe variety of mutexes used in the rt-thread
ZynAddSubFX* unsafe unsafe memory allocation in oscillator wavetable

generation (the total number of realtime hazards
was greatly decreased with the use of Stoat)

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 110

AVE Absurdum

Winfried Ritsch
Intitute for Electronic Music and Acoustics

Inffeldgasse 10/3
8010 Graz
Austria

ritsch@iem.at

Abstract

Auditory Virtual Environments (AVEs) are used to
simulate audio environments in real spaces. As room
in room reverberation system (RRR) they augment
the acoustics in spaces, e.g. in concert halls and
music theaters. Why not utilize them for theater
music as acoustic stage design and therefore as a
playable instrument ?

Even more, tune them to extreme configurations,
so that absurd acoustic situations can be realized,
absurd in the sense of not normal or possible in
real physics and using distortions in time, space, fre-
quency and signal domains.

This paper discusses the conceptualization and
design of an artistic research project using AVEs for
a theatre and some of the new aspects of these ideas
are discussed. For the multi-space theater produc-
tion “the Trial” from Franz Kafka for actors, singer,
choir and stage design at the Art University in Graz
networked AVEs have been realized, utilizing Am-
bisonics systems in concert halls and movable acous-
tics instruments on open spaces.

Keywords

Auditory Virtual Environment, acoustic, stage de-
sign, computer music, Ambisonics

1 Introduction

An auditory virtual environment (AVE) is a vir-
tual environment (VE) that focuses on the au-
ditory domain only. It sees itself independent
from other modalities like vision. Nevertheless
an AVE could also be combined with the vi-
sual domain. Depending on the application, the
user may be either a passive receiver or be able
to interact with the environment. Three dif-
ferent approaches for implementations of AVEs
are listed in Blauert’s book “Communication
Acoustics”[Novo, 2005] from Novo:

1. Authentic reproduction of real existing en-
vironments.

The virtual room should evoke in the lis-
tener the same percepts that would have

been evoked by the corresponding real envi-
ronment. He should have same spatial im-
pression moving through and perceive his
own movement inside the environment as
well as the movements of sound sources.

2. Reproduction of plausible auditory events

This approach tries to evoke auditory
events which the listener perceives as hav-
ing occurred in a real environment. Here
only those features are implemented which
are needed for a specific simulation situa-
tion.

3. Creation of non-authentic plausible audi-
tory events or environments.

The virtual room doesn’t evoke percepts
in the listener which are related to a
real acoustic environment, evoking audi-
tory events where no authenticity or plausi-
bility restraints are imposed, targeting pure
virtual environments like computer games.

Figure 1: physical adjustable acoustic for Beat
Furer’s music theater FAMA

1.1 the setting

For the music theater production based on the
novel “Der Process“ (engl. ”The Trial”), writ-
ten by Franz Kafka from 1914 to 1915 for actors,
singer, choir and stage design, an experimental
theater music composition should be done:

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 111

The hopeless search of the main char-
acter “Josef K” for the reason of his
arrest is the grandiose template for a
inter-institutional project: a play with
perception, a sensual journey through
existential abysses and absurdities of
the bureaucracy with students and lec-
turers of the institute stage design /
acting / singing, song, oratorio / elec-
tronic music and acoustics, choir of the
Kunstuniversität Graz.

The production was roughly spread in three
parallel played scenes at three subsequent places
with an collective intro at the foyer and collec-
tive finale at the concert hall:

Figure 2: Ligeti hall stage design with big move-
able blocks

Gyorgi Ligeti hall 400m2 concert hall con-
structed for virtual acoustics.

theatre in the Palais (TIP) 200m2 theatre
hall constructed traditional acoustics.

courtyard between these houses with a
Peepshow construction as stage design.

After the “Intro” in the foyer, the audience
was divided into 3 groups, each group attend-
ing a 30 minute performance in one of the places
and have been guided from one place to the
other within the intermissions.

1.2 the compositional approach

Additional constraints for the musical acoustic
composition has been made to concentrate en-
force the ideas of the piece:
One main idea was to use signal processing for

the experimental theater music composition for
the play “Der Process” on live signals only and
do not use any pre-produced sound material.
All material should be based on live recorded
sound signals using different microphones at the

places; to construct virtual soundscapes for dif-
ferent audio reproduction systems and virtual
acoustics as a main instrument within these
sceneries.
Another constraint that all places should be

treated as networked AVEs.

Figure 3: TIP stage with big hole in the middle,
traditional chariot-and-pole-system

1.3 the experimental approach

The a artistic research question have been: can
a non-plausible non-authentic AVE, applied as
a complex music instrument for theater music,
produce a varying plausible acoustic sceneries.
As an extension, the AVE should use distor-

tions in space, time, spectrum and signal do-
main and should therewith produce an distorted
AVE, which is still perceived as acoustics, an
absurd acoustics, Therefore the production was
titled “AVE-Absurdum”. With this concept the
category of AVEs should be extended to a fourth
category of AVE, let us name it “absurd AVE”,
which is non-authentic but plausible in an ab-
surd way of reception and in respect to the vi-
sual domain. This AVE does evoke percepts in
the listener which are related to a real acoustic
environment and the live sound produced. by
the actors and other real sound sources.
As a common audio 3D sound representation

Ambisonics should be used, also to allow sim-
ulations of these AVEs at development phase
prior the first rehearsals.
Ambisonics was chosen, not only because of

already implemented Ambisonics system at the
concert hall, which has been the very well tested
in previous productions like “Pure Ambisonics”,
but for streaming the acoustical impact of one
room to another. Therefore spatial recordings
and mixes as 3D audio streams was used, so
spatial information of the audio signals can be

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 112

x

y

Eingang

E 4

E 1

E 2

L 30

S2

S1

L 31

M 6

M 1

M 5
M 4

M 1
M 3

M 2

MA

L 20

L 1

L 5

L 7

L 6

L 19
L 8

L 18

L 28

L 15

L 16

L 17

L 25L 14 L 24
L 13

L 12

L 10

L 11

L 3

L 4

L 9

L 22

L 2

L 26
L 23

L 21L 29

L 27

Figure 4: loudspeaker in Ligeti hall: Ambisonics L, subwoofer S, extra E, and microphones M. The
heights of the speaker increases to the middle from 2m to 8m.

used in other spaces. Also Ambisonics can be
used in directional speaker system, used for the
move-able acoustics in between the spaces.
As a stage design using processes as backdrop,

like an additional layer on the theater music it-
self, as an big invisible ensemble of signal pro-
cessing algorithms, the generated sound envi-
ronment represent a complex machine. So from
another perspective these AVEs can be seen as
part of the “theater machine” in the meaning
of Gilles Deleuze concept of machines[Raunig,
2004; Deleuze and Guattari, 1977].

2 AVE Absurdi

For the three spaces, three different implemen-
tation of Ambisonics has been designed:

Ligeti-Saal Ambisoncis 4th order with 32 am-
bisonics speakers and 2 subwoofer, 7 direc-
tional microphones hanging from the ceil-
ing, 2 headsets for main actors, 2 pickups
on the floor and 2 on the blocks of the stage
design.

Theater im Palais (TIP) ambisonics 2D
ring on the ceiling, subwoofer, 2 Mikro-
fones for Reverberation, 2 microphones for
enhancement of special plaxes, 1 headset
for trigger only.

courtyard between two houses Movable
spherical directional loudspeaker driven by
embedded linux computers connected to
multichannel amplifier and a directional

microphone, powered by batteries and
played by actors.

The order used in the different places is nor-
mally defined by the amplification system, but
here we work also with Ambisonics streams and
virtual microphones detecting different signals,
the maximum is limited by the encoding system.
The Ambisonics system at the TIP, since the

stage was designed as proscenium stage with the
audience at one wall, was not satisfying and can-
celed by the director there, who wanted a purely
stereo frontal speaker system. Anyway streams
from other places has been used for the sound
environment.
In the following the space in the Ligeti hall

and the movable acoustic will be discussed.

2.1 AVE in Ligeti concert hall

Varying playable acoustics has been developed
as an acoustician for Beat Furer’s music the-
ater FAMA. As a stage design a real room in
room with rotate-able wall elements, one side
absorbers one side reflectors, for 200 listeners
was build like a huge machine. One restrain
was to use no electro-acoustic element. Un-
like this physical adjustable acoustics, electro-
acoustic AVEs should be implemented.
Since the already installed Constellation

Acoustic System from Meyer Sound[Sound,
2010] with circa eighty of small speakers and
about twenty microphones in 5 meter heights
as a closed system was not in any way flexible

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 113

enough to fulfill the requirements of the idea of
an “AVE absurdum”.

The speaker used for the 3D Ambison-
ics system are shown in figure4. 31 active
Klingt&Freytag speakers have been used, where
the first 29 of them are mounted on pan-
tographs, which can adjust the heights and di-
rection of each speaker individually as presets.
The L22 speaker has to be adjusted higher, be-
cause of the blocks from the stage designe and
has been second by two others L30 and L31 on
stands on the floor to lower the acoustical hori-
zon. Additional two sub-woofer left and right in
the front corners for enhancing the Ambisonics
sound and used for special subsonic effects have
been placed.

The Hemisphere was slightly expanded as el-
lipse and stretched to the front to increase the
“sweet spot”. With this number of speaker a
5th order Ambisonics system could be realized.
But since all the obstacles and additional mov-
able blocks using a 3th order Ambisonics had
smother results on moving sources, increased
spatial continuity and avoided to spatial aliasing
errors over the room which resulted in a bigger
“sweet spot”.

As an decoder the standalone decoder of
the AmbiX plugin suite[Kronlachner, 2013] was
used, for which Matthias Frank from the IEM
calculated an suitable Allrad-decoder[Zotter
and Frank, 2012] . For preproduction of effects
and the development of the AVE in a studio
or over headphones the binaural decoder with
the special set of impulse-responses, measured
in the Ligeti-Hall, was provided.

The decoder was fed with Ambisonics signals
from applications within the Linux computer
and over a MADI-Audio Interface input routed
through the Lawo Mixing console from other
computers, using “jackd”. Therefore three com-
puter musicians were able play in parallel using
the same AVE system over one central decoder
feeding the speaker. The sub-woofer manage-
ment has been done in the Mixer, using the
Ambisonics signals and an additional a subsonic
effect channel for special effects.

The AVE-Absurdum has been implemented
with Puredata[Puckette, 1996] running patches
on different computers connected over MADI
Audio Interfaces. The main computer imple-
mented an Ambisonics Mixer with the room
in room reverberation system (RRR), derived
from the CUBEmixer[Ritsch et al., 2008] de-
velopment of previous years and the “acre”

Pd extension library with the therefore devel-
oped Ambisonics Toolbox module for Pd: “acre-
amb”[Ritsch, 2016] using “iem-ambi” external
library.
“acre-amb” is a collection of high level Pd

abstraction, to implement Ambisonics function-
ality for Ambisonics mixing and processing of
multichannel signals and controls to be used
in compositions and effects. Also a goal was
to easily integrate Ambisonics encoder, decoder
with calibration and speaker distribution, pro-
viding also connection and processing targeting
fast prototyping of new Ambisonics algorithms.

Figure 5: consoles (from left): Lawo Mixing
Desk, Controller for effects, Computer Console
with Pd Patch and AmbiX Decoder, Controller
for time machine and memory player, Spectral
Ambisoncis, with notebook as controller

2.1.1 Room in Room Reverberation for
acoustics

The core of the RRR system is a multichannel
reverberation system with 6 Inputs and 12 early
reflections and 6 late reverb channels to be spa-
tialized in the 3D space of the AVE.
It was not possible within this production

time to mike a choir with 110 singer, especially
because they move sometimes erratically in the
room. Adjusting to limited rehearsal time, we
had to find a solution where the actors and choir
can play with different absurd acoustics, uti-
lizing the conductor and movement-director to
explore and fixate this effects within their re-

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 114

hearsals, starting within the very first rehearsals
and eliminating the need to track the movement
of the choir and actors for the composition.
The solution was chose was enabling “active

zones”, areas under microphones, where choir,
actors and audience are enhanced and encounter
different acoustics feedback. These effects can
be switch or cross-faded for each scene. Also
actors can be in an different acoustical spaces
parallel to the choir or audience:
Therefore the RRR was driven directly by mi-

crophones in 3-4m heights, enabling the differ-
ent playable acoustics from small garage reverb,
long tunnels with scatter echoes to big halls,
even further to echoes like from surrounding
buildings, mountains, allowing > 200ms early
reflections. This allows to build none-plausible
acoustics, like increasing energy on reflections
and/or different acoustical rooms in one room:
an absurd AVE.
Additional to limiting the output, especially

decreasing feedbacks of the reverb, each micro-
phone got an feedback suppression EQ for the
3 most resonant frequencies of the room.

2.1.2 Distortion in Space

Within the RRR spatializing early reflections
from only one direction or placing all late re-
verb to the other site, the acoustical space can
be shaped: eg. imaging a big room in one direc-
tion and a wall in the other. This can be done
dynamically, with a sudden appearance of a late
reverb from one site. Since a changing acous-
tics can be perceived better than a static one,
since change of size of rooms, normally does not
happen, are drawing more attention to listeners
than static ones.
A overlap of one acoustic space over another

seems to be more unnaturally, but since most
singers and actors use reverb on stages, the au-
dience is used to this effect.

2.1.3 Distortion in signal

Another effect was inserting processing of the
microphone signal path. Within this project
three types has been tested:

spectral Resonances and filters

dynamics Limiter, Compressor and Expander.

shaping Waveshaping: tubes, metal strings,
noise (cut) and also string simulator, metal
plate.

Spectral filter have same effects as different
spectral properties of reflection material and

is therefore only spectacular, if really applied
strongly. Changing this dynamically changes
the whole “sound color” of the scenes.
Dynamics have been mostly applied on singer

and actors. Nowadays audience is widely fa-
miliarized with these effects for solo perform-
ers, but doing it extreme, which means silent
passages become loud and loud voices decrease
the volume is a strong effect, but is something
singers do not like. Therefore it was used to
increase the struggle of the actor against the
environment, here acoustics. The drawback are
that it was really hard to control without feed-
back at silent phases and can be perceived as an
mistake in the performance very easily.
A really strong effect is the distortion espe-

cially of the early reflections in the reverb: A
tube shape make the room a warm sound and
using nonlinear shapes introduces noise. Addi-
tional metal distortion like ring-modulator with
2 inputs signals within a parallel dialog can pro-
duce really scary rooms. As drawback the feed-
back is again an issue, so mostly limiters has to
be used.

Figure 6: Choir surrounding the audience and
actors behind a transparent curtain

2.2 Distortion in Time

We called it “artistic time-stretching”, which is
an ongoing research project done by Manuel
Planton on the IEM, where time-stretching
should be applied in live situations. time-
stretching and realtime is clearly a contradic-
tion, since stretching leads in the past, which
means the signal is not within the realtime con-
straints.
There has been three different phases in per-

ception experienced:

• time-stretched signal within the early re-
flections delay < 80ms

• echos up to 300ms

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 115

• a playback of a detached recording of the
signal > 1sec− inf

Playing within this phases is the artistic ap-
proach, where voices has to be slowed down first
and then speed up again. Doing this, the sound
is amplified first, than scattered and becomes
then a dialog with the live signal, which is a very
thrilling effect, even more it seems like a replay
like a “deja-vu” experience. It turned out to
be a thrilling effect, which actors liked to play
with. It was used on solo pieces on actors and
repetition phases of the choir. Introducing feed-
back loops of the signal to the time-stretcher
optionally combining with pitch shifts, expands
the possibilities of this effect even further. So it
was used solo for some scenes and the effect sig-
nal spatialized independently from the position
of the source.
For the implementation a own Pd external

was written, using the rubberband library and
additional an overlap and add (OLA) algorithm.
Considering the limited rehearsal time and the
big parameter space, the time-stretcher has to
be played interactively, observing the actors by
an additional electronic musician. As an own
instrument the Pd-patch was run on an separate
computer with own controllers, mixed in via a
Ambisoncis bus signal.

2.3 Spectrum processing

Figure 7: Spetcre Pd GUI

Another special effect has been the spectral
distortion over space, we named it “spectre” de-
veloped and played by Christoph Ressi. With
an special patch using small FFTs/IFFTs, the
spectral information was split into several chan-
nels, which have been spatialized in the 3D
space. High frequencies could be played from
another direction than low ones and spread over
the hemisphere. Drawing tables controls the
movements and spreading. Also a feedback loop
to within the effect was introduced, so it can

do a kind of spectral freezing. This develop-
ment was used to audio-process the choir in-
put signals and distribute them in the space.
The choir chant tends to be a acoustical en-
vironment with itself, especially if the choir is
surrounding the audience. On transient signals
with fast glissandi elements like shouting, clap-
ping and stamping the effect is audible like a
rapid movement of the sound in the room. On
long notes especially accords, the rooms begin
to feel like stretched and softened walls, because
it is hard to hear any dimension, since reflec-
tions are masked by direct sound. The effect
was used on a one scene as solo acoustic perfor-
mance and frozen during conversions.

Figure 8: development prototype for linux
player with 8x100W for 2 tetrahedron-speaker:
decoupled USB 2/8channel, dc/dc, olimex-A20,
2x class-D amplifier to be powered by 12V bat-
tery

3 Movable Virtual Acoustics

Figure 9: agent with microphone playing 2 di-
rectional speaker

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 116

For virtual acoustics in the courtyard, where
no speakers and fixed installation was available,
a special concept of moving acoustics was con-
ceptualized. Operated by electronic musicians
as “agents” in the play, the movable acoustics
instrument with AVE-function and stream ren-
dering features, were integrated in the play by
the director:
Using spherical loudspeaker arrays allows us

to beam sound to many directions utilizing Am-
bisonics signals. With walls of buildings and
rooms around in the courtyard, reflection can
be induced, which triggers a kind of surrounding
sound. The simplest of the spherical geometries
the tetrahedron, which has been used before in
a performance enhancing the room acoustics of
a church[Robert lepenik, 2014] . The Tetra-
hedron loudspeaker have 4 wideband speaker
mounted on each plane and can be placed on
an portable stand. The electronics consists of
a 4x100W class-D amplifier, supplied by an
12V12Ah rechargeable battery, driven by an
“Olimex ARM-A20” embedded computer with
a hacked multichannel USB audio interface,
a phantom power microphone-preamp, speaker
cable and an microphone over XLR cable. The
agents can carry the whole electronics in their
bags and hold the microphone and speaker.
A directional microphone has been chosen for

interaction with the surrounding, so the agents
can focus and play with the sound input of the
environment using a kind of AVE-patch. Re-
ceiving the Ambisonics streams from the other
spaces, using an addtional virtual microphone,
they can select signals from other performances
to be combined in the audio scene.
The whole signal processing was done by a

Pd patch including different effects like feedback
with reverb, pitch shifting, delays etc. to realize
a movable AVE. This work was named “AVE-
tetrahedron” and experimental explored before
on the campus.
To play this instrument small controllers

mounted to the arms have been used.

4 Ambisonics network

Streaming Ambisonics was developed for the
COMEDIA project[Ritsch, 2010]. Using this
technique, the 3D acoustic signal of an room can
be delivered to other spaces, broadcasting eg.
the 25 channel Ambisonics signal from Ligeti
hall to others. The receiver can choose the AVE
and place virtual microphones inside, using con-
trollable Ambisonics decoder.

3 band splitter and equalizer

midrange

decoder

highrange

decoder

calibration

equalization

lowrange

decoder

encoder 1
Ambisonics

theta/phi/width

encoder 2
Ambisonics

theta/phi/width

channel strip

volume, EQ, Limiter . . .

Tetrahedral Speaker Control

SPEAKER 1 SPEAKER 2 SPEAKER 3 SPEAKER 4

Ambisonics bus 1.order

multiband Ambisonics decoder

+

crosstalk cancelation

channel strip

volume, EQ, Limiter

calibration

equalization

calibration

equalization

calibration

equalization

Figure 10: tetraeder drive for AVEs

For streaming scripts for “gstreamer” has
been written as transmitter and receiver con-
nected via “jackd” to Pd. This allows a ad-
justable and acceptable latency with a sufficient
buffering for different situations.

choir

actors

singer
objects

acoustics

Ligeti-Saal

Vorplatz

TIP

schauspieler
sänger

Raum

Foyer room

Raum

schauspieler
Network between spaces

Ethernet

MADI

wifi-stream
+-

+-

+-

mix

NET

Figure 11: Network of AVEs

5 Conclusions

The whole production was a big success from
the reaction of the audience and the partici-
pants. The AVE concept was accepted, after
some persuasiveness, explaining the concept to
all participants. Because of the limited time,
there was not much space to criticize and over-
throw the concept, so even it was very tight we
tried to stay as close to the concept as possible
or drop it, like within the TIP.
To focus on transformations and not so much

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 117

on sound-effects was a very wise decision, since
effects brings to much additional parallel con-
tent and are not so invasive to support the idea
of Kafka’s absurd world.
The concept of AVE absurdum as a playable

instrument has been proven in the Ligeti-hall.
The movable acoustics instruments works nicely
in small areas. Simple effects like distortion in
time work surprisingly well. Imprinting other
acoustics of one room in the other also works
fine in most situations, but since listeners are
used to it in media perception, are not spectac-
ular.

6 Acknowledgements

Thanks go to all the participants of the play,
more than 80 for support and being open
minded to accept new concepts. Also to the
university with greatly supported this produc-
tion beyond the normal effort for workshops
and lectures. Especially thanks to the Sabine
Pinsker from the stage design department for
organizing the whole project and the general
director Horner for his encouragements to enter
new path for theater music. For the develop-
ment, Atelier Algorythmics which provides the
Tetrahedron-player with embedded linux sys-
tems and other hardware.

Figure 12: Winfried Ritsch conduction pan-
tographs in ligeti hall

References

G. Deleuze and F. Guattari, 1977. Pro-
grammatische Bilanz für Wunschmaschinen,
page 489. Deleuze, Gilles: Kapitalismus und
Schizophrenie. Suhrkamp. Die Neu-Erfindung
des Maschinenbegriffs refereniert von Raunig
Gerald.

M. Kronlachner. 2013. Plug-in suite for mas-
tering the production and playback in sur-
round sound and ambisonics. In Linux Au-
dio Conference 2013, University of Music and
Performing Arts, Graz, May. Institute for
Electronic Music and Acoustics, Linux Audio
Group.

Pedro Novo, 2005. Auditory Virtual Environ-
ment, chapter 11, pages 277++. Signals and
Communication Technology. Springer.

M. Puckette. 1996. Pure Data. In Proceed-
ings, International Computer Music Confer-
ence., pages 224–227, San Francisco.

G. Raunig. 2004. Einige Fragmente über
Maschinen. Grundrisse 17. Die Neu-
Erfindung des Maschinenbegriffs.

W. Ritsch, J. Zmölnig, and T. Musil. 2008. he
cubemixer a performance-, mixing- and mas-
teringtool. In Proceedings of the LAC 2008,
Cologne, Germany. ZKM, Linux Audio Users
Group.

Winfried Ritsch. 2010. Nettrike. CO-ME-DI-
A,EACEA Culture Project on Network Per-
formance in Music.

Winfried Ritsch. 2016. Ambisonics toolbox
for puredata. internet. Puredata abstraction
library.

Winfried Ritsch Robert lepenik. 2014.
Ex Machina Dei. commissioned work by
Musikprotokoll Graz 2014 for robot organ
player, robot piano player and 6 Tetrahedron-
speaker at Church St. Andrei.

Meyer Sound. 2010. Constellationacoustic
system. internet.

F. Zotter and M. Frank. 2012. All-round am-
bisonic panning and decoding. Journal of the
Audio Engineering Society. audio, acoustics,
applications, 60(10):807–820, 11.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 118

Multi-user posture and gesture classification for
‘subject-in-the-loop’ applications

Giso GRIMM1,2 and Joanna LUBERADZKA2 and Volker HOHMANN1,2

1 HörTech gGmbH, Marie-Curie-Str. 2, D-26129 Oldenburg, Germany
2 Research group “digital hearing devices”,

Department of Medical Physics and Acoustics,
Medizinische Physik und Cluster of Excellence Hearing4all

g.grimm@uni-oldenburg.de

Abstract

This study describes a posture classification method
for a marker-free depth camera. The method con-
sists of an object identification procedure, feature
extraction, and a näıve Bayesian classification ap-
proach with a supervised training. Point clouds
obtained from the depth camera are split into ob-
jects. For each object a set of features is ex-
tracted. A method of feature pre-processing is pro-
posed and compared against a statistical orthogo-
nalisation method. Using a manually labelled train-
ing data set, the probability distributions for the
Bayesian classification are obtained. As a result of
the classification, the most likely gesture is assigned
to each object in real time. Classification perfor-
mance was tested on a separate data set and reached
about 80%.

Three different applications are described: Auto-
matic estimation of user postures to estimate the
influence of hearing devices on user behaviour in
communication situations, the control of an inter-
active audio-visual art installation, and interactive
light control on a dance-floor setup with multiple
dancers. Classification performance in these appli-
cations was measured and discussed.

Keywords

gesture classification, behaviour analysis, hearing
devices, interactive art, subject-in-the-loop

1 Introduction

With the development of assistive technolo-
gies, there is a growing need for robust auto-
matic identification of human postures and ges-
tures. Gesture recognition is used for improv-
ing the human-machine communication, e.g., in
hand gesture-based device control [Freeman and
Weissman, 1997; Richarz et al., 2008]. Another
use case is the classification of gestures and pos-
tures that describe the subject’s behaviour or
provide information on the current state of the
subject [Busso et al., 2008; Melo et al., 2015].
Automatic recognition of various postures has
potential applications in research areas where
the test subject’s behaviour is analysed. As

an example from the hearing research, in typ-
ical communication situations, leaning forward
while listening is associated with a high listen-
ing effort, whereas sitting more relaxed indi-
cates a lower effort [Paluch et al., 2015]. Man-
ual labelling of user behaviour in similar tasks
is usually time consuming and is not sufficient
in case of the ’subject-in-the-loop’ experiments,
where the measurement is controlled by the re-
sponses of the test subject. Interaction between
the subject reactions and the measurement pro-
cedure is desired when aiming at more realistic
experimental conditions, but can also provide
additional performance measures from the ex-
perimental feedback loop. ’Subject-in-the-loop’
experiments require a real-time classification of
gestures and postures. This differs from conven-
tional behavioural experiments where a post-
hoc analysis of the data is possible. Besides re-
search applications, machine control functions
based on natural postures are possible, e.g., a
hearing device could increase the noise reduc-
tion efficiency when the user’s change in pos-
ture indicates a higher listening effort. Such an
application would require a body-worn motion
tracking sensor, e.g., accelerometer and gyro-
scope embedded into a hearing device.
Gesture and posture recognition tools are also

applied in music and arts [Ciglar, 2008; Don-
narumma, 2011]. Typically, an artist controls
music generation and modification tools with
gestures, resulting in a mixture of dance and
music performance. The classification system
proposed here is designed to be useful for mu-
sic and art applications with multiple users.
One application is an audio-visual installation,
where the postures of the audience influence the
sound and vision. Another potential real-time
application is the live interactive light and mu-
sic control system for a dance-floor.
Real-time analysis of postures and gestures

from depth images is commonly achieved via
skeleton modelling [Shotton et al., 2013]. In the

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 119

applications of this study, such a high level pos-
ture model is not required, because only a lim-
ited number of posture and gesture classes need
to be discriminated. Furthermore, these appli-
cations require a computationally fast method
of classification. For this, a näıve Bayesian clas-
sifier as used in this study. This simple classifi-
cation method can deal with a low-dimensional
data and requires only a limited amount of
training data [Ashari et al., 2013; Gupte et al.,
2014]. For discriminating only a small set of
classes, low level features describing the coarse
point cloud distributions and the velocities of
certain point cloud areas can be used. However,
to fulfil the implicit statistical assumptions of
the näıve Bayesian classifier, and to identify the
most relevant application-specific feature sets, a
pre-processing of features may be beneficial.
In this paper, methods of point cloud process-

ing (sections 2.1 to 2.3), feature pre-processing
(section 2.4) and classification (section 2.5) are
described. In section 2.6, the training con-
ditions in three different applications – pos-
ture classification for hearing research, multi-
user control of an audio-visual art installation,
and individualised light control for a dance-floor
– are explained. Classification performance in
the different applications with the proposed pre-
processing methods are given in section 3 and
discussed in section 4.

2 Methods and apparatus

For this study, one or more subjects were
tracked using a Microsoft kinect depth camera.
Although the final applications of this gesture
and posture classification approach significantly
differ, they have all the same structure, which is
depicted in Fig. 1. First, the camera data was
filtered for a more robust point cloud estimation
and background removal. In a second step, the
point cloud was split into multiple objects. For
each object, a set of features was extracted, and
based on this feature set, the posture or gesture
of each object was classified. The point cloud
processing and classification was implemented
in the openMHA hearing device signal process-
ing platform [Herzke et al., 2017; Grimm et al.,
2009; Grimm et al., 2006]. Training and data
analysis was implemented in Matlab. These
processing blocks are described below.

2.1 Noise reduction and background

removal

The Microsoft kinect depth camera is an optical
sensor which measures the depth through the

noise reduction &
background removal

edge detection &
object grouping

 point cloud

coordinate
transformation

coordinate
transformation

 point cloud sets

feature
extraction

 point cloud

preprocessing
& selection

 full feature set

Applications 2+3:
audio/video/light mixing

 object-
 center
 coordinates

classification

Application 1:
data logging

 probabilities probabilities

 optimised
 feature set

training

optimisation

depth camera
(kinect)

 point cloud

Figure 1: Structure of the proposed gesture and
posture classification framework.

parallax of an infrared laser grid. It provides
a depth value d for each pixel position (k, l).
Invalid values (e.g., occlusion, absorption) get
the depth value d = 0. In this study, the depth
was scanned with a frame rate of 10 Hz.
Absorbing objects and objects with a very

uneven surface, e.g., curly hair, typically re-
sult in invalid data points for many frames. To
increase robustness in such conditions, invalid
values were replaced by the last available valid
value, if a value was measured within the last
second.
For the classification of objects it was es-

sential to separate them from the background.
Therefore, in an initial phase without subjects
in the sensing area, the background depth was
measured, and all depth values close to the
background were removed. After this step, only
those data points remain which were assumed
to belong to a relevant object.

2.2 Edge detection and object grouping

An assumption for the object grouping was that
all objects have a spatial separation, i.e., either
the depth was not continuous or the objects
were separated by background pixels. This al-
lows to use a simple first-order gradient edge
detection algorithm using the depth data. A

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 120

pixel (k, l) was an object boundary if the depth
gradient was above a threshold dt:

(dk,l − dk+1,l)
2 + (dk,l − dk,l+1)

2 > d2t (1)

To construct objects, a generic flood fill algo-
rithm [Torbert, 2012] was applied to identify all
pixels within a closed boundary. These pixels
were marked on an object map with their ob-
ject number. The set of pixels (k, l) belonging
to one object was P, which was then used for
further object-specific processing if the number
of elements of P, p, has a sufficient size.

Coordinate transformation. At this stage
the objects were defined by a set of pixels with
a certain depth from the camera. For a robust
feature extraction, these have to be transformed
into a world coordinate system. In the first step,
pixel data was transformed into a camera coor-
dinate system xc = (xc, yc, d)

T , with the hor-
izontal distance from the camera axis xc, the
vertical distance yc and the distance from the
camera d. These coordinates were linearly ap-
proximated by

(xc, yc) = α(k − k0, l − l0)dk,l. (2)

(k0, l0) was the central pixel of the camera.
World-coordinates x = (x, y, z)T (x distance
along camera axis, y to the left, z upwards)
were calculated by rotation and translation of
the camera-coordinates. These point clouds P

were the basis of further feature extraction of
each object. The object centre was x = 〈x〉

P
,

i.e., the mean of all points in the point cloud P.

Temporal alignment of objects. At this
point, the order of detected objects depends
on the first object pixel position in the camera
plane. This is not a robust measure, thus the
object order may change from frame to frame.
However, to allow for analysis of time related
features, the objects were re-ordered based on
a similarity measure of distance d and the ob-
ject size ratio r between consecutive frames.
The distance between the objects o and q at
the time indices t and t − 1 was defined as
do,q(t) = ||xo(t) − xq(t − 1)||. The size ratio

was ro,q(t) = e|ln(po(t))−ln(pq(t−1))|. Then the co-
herence matrix C(t) between two objects was
defined by its elements

co,q(t) = ro,q(t)e
−γdo,q(t) (3)

with a weighting coefficient γ = 10. For a re-
sorting of objects, the columns of C were or-

dered to maximise the elements on the diago-
nal, corresponding to a maximal temporal co-
herence.

2.3 Feature extraction

A list of all extracted features and their labels
can be found in Table 1. Features correspond-
ing to the object in the global coordinate system
as well as features describing size and distribu-
tion of the point cloud P relative to its centre
were extracted. The object rotation was esti-
mated from the ratio of depth to width. Two
methods of calculating point cloud distribution
were tested: In the first method, weighted av-
erages across P were calculated. For example,
the average left bottom position was estimated
by using a weight w with

w =

{

(z − zmax)
2 + (y − 〈y〉)2 y > 〈y〉
0 otherwise

.

(4)
To account for dynamic properties, which

may be important for gesture classification, in
addition to the above mentioned point cloud
distribution related features, the absolute value
of their temporal derivatives was calculated.
These features define the time-variant feature

vector f(t) which was used as an input of feature
pre-processing.

2.4 Feature pre-processing and

optimization

Before the actual classification, the features f

were pre-processed with a method P to max-
imise the classification performance,

f̂(t) = P{f(t)}. (5)

The pre-processing method P was a combina-
tion of temporal low-pass filtering with the time
constant τ , selection of optimal feature set F,
and PCA.
The pre-processing method P was iteratively

optimised. In each iteration cycle m, the train-
ing of the classifier was done based on the pre-
processed training data set, whereas the classifi-
cation performance to which this pre-processing
method Pm led, was computed using the test
data set, pre-processed in the same way as the
training data. The pre-processing method Pm,
which gave the best classification performance
was chosen as the final pre-processing method
for classification.

Orthogonalisation. The näıve Bayesian
classifier used in the current work assumes

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 121

name label

global coordinates:

number of pixels p n.n

mean position x n.x, n.y, n.z
median position n.xmed, n.ymed, n.zmed
rotation n.rot

local coordinates:

size n.sx, n.sy, n.sz
thickness n.r

segment positions o.lx o.lz, o.rx, o.rz, o.lby, o.rby
segment thickness n.r1, n.r2, n.r3
z-quantiles n.z25, n.z50, n.z75
velocities:

object velocity o.vz

size changes o.vsy, o.vsz, o.vsx
vertical segment velocities o.vlz, o.vlz, n.vz1, n.vz2, n.vz3
horizontal segment velocities n.vxy1, n.vxy2, n.vxy3
angular velocity n.vrot

Table 1: List of features per identified object. The features were calculated by two different
implementations, as indicated by the prefix o and n.

conditional independence of all the features.
This means, that adding features which are
highly correlated with other features might
degrade the performance of the classifica-
tion. Therefore, an orthogonalisation of the
feature space is required. In this study, two
orthogonalisation methods were tested.

A principle component analysis (PCA) is a
generic orthogonalisation method. A transfor-
mation matrix is estimated, which is then ap-
plied to the feature vector before classification.
To avoid a dominance of large-scale features, all
features were scaled to ensure a standard devi-
ation of one before calculating the PCA coeffi-
cients.

As an alternative method, a feature selection
method is proposed. First, the individual clas-
sification performance of each feature from the
full feature set was computed, by training the
classifier only on the given feature. Classifica-
tion performance was then measured on the test
data set. The features were then sorted by their
individual classification performance. Starting
with the best performing feature, features from
the sorted feature set were added successively
to the optimal feature set. This procedure was
repeated until no further increase of classifica-
tion performance was observed. Although this
feature set is optimised for classification perfor-
mance, it does not guarantee that it is orthog-
onal in a statistical sense.

Low-pass filtering. Low-pass filtering of the
features across time results in a smaller feature
variance within a class and thus a better class
separation, which as a consequence leads to a
better classification performance. On the other
hand, with long time constants the classifier is
not able to track transitions between the classes.
The time constant τ can be adapted to the ex-
pected frequency of class transitions in the test
data, or to increase classification performance
and stability. The optimal τ was determined by
a one-dimensional grid search, with and without
PCA and feature selection.

2.5 Classification

To accomplish the gesture classification task, a
Gaussian Näıve Bayesian Classifier was imple-
mented. This approach assumes a set of condi-
tionally independent and normally distributed
features. Each class ch, where h = 1, ..., Nc is
the class index, and Nc is the total number of
classes, represented a different gesture or pos-
ture. f̂ is a data vector with extracted features
f̂j , where j = 1, ..., N

f̂
is the feature index, and

N
f̂
is the number of features. Considering the

independence assumption, Bayes formula can be
written in the following form:

p(ch|f̂) =
p(f̂ |ch)p(ch)

p(f̂)
=

∏N
f̂

j=1 p(f̂j |ch)p(ch)

p(f̂)
,

(6)

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 122

relaxed straight forward gestures

Figure 2: Labels of the project 1 (research ap-
plication).

which means that the overall class conditional
probability p(f̂ |ch) can be computed by multi-
plying the conditional probabilities for each fea-
ture p(f̂j |ch).

Since the elements of f̂ are assumed to be nor-
mally distributed p(f̂j |ch) = N(µjh, σjh), the
probability density function (PDF) of a feature
j for a class h can be modelled by the mean
µjh and standard deviation σjh. These parame-
ters were estimated from the manually labelled
training data. Also a flat prior probability was
assumed, p(ch) = 1/Nc.

In the current study, probabilities p(ch|f̂(t))
were calculated for each object in each time
frame. For estimating the classification perfor-
mance, the confusion matrix was computed as
an average posterior probability for each class.
The classification performance was the geomet-
ric average across the diagonal of the confusion
matrix.

2.6 Classification tasks and class labels.

The training was executed for three different
classification tasks, corresponding to the use
cases in hearing research, art and entertain-
ment. In each training data set, data from nine
test subjects (age from 23 to 44 years) was used.
The recording of each gesture or posture lasted
approximately 90 seconds for each subject.
In the first task (‘project 1’), four classes

with typical communication states were defined
with an indention to track the subject’s be-
haviour during the hearing experiment. There
were three sitting postures with labels relaxed,
straight, forward, and a class corresponding
to gesticulation while talking, gestures.
The second task (‘project 2’) consisted of

eight classes, either body movements or pos-
tures, which were used for controlling and mix-
ing of sound and video art installation con-
cerning different manifestations of water. The
’water’ classes had the following labels: labels

lake ice boil steam

waves thunder ocean rain

Figure 3: Labels of the project 2 (audio-visual
art installation).

stand beer dance xdance

windmill

Figure 4: Labels of the project 3 (dance-floor
light control).

lake, rain, ice, waves, ocean, boil, steam

and thunder.

The third classification task (‘project 3’) con-
tained five classes related to typical actions on
a dance-floor at parties, to control the light ac-
cording to individual behaviour of the dancers.
The labels stand (standing or slowly walking),
beer (drinking from a bottle), dance (dancing),
xdance (excessive dancing) and windmill (ro-
tating head) were used.

Images from Figures 2, 3 and 4 present the
selection of classes for each project.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 123

0.1 0.2 0.5 1 2 5 10

 low-pass filter time constant / s

0

0.2

0.4

0.6

0.8

1
cl

as
si

fi
ca

ti
o

n
 p

er
fo

rm
an

ce
project1 none

proposed

PCA

proposed,PCA

0.1 0.2 0.5 1 2 5 10

 low-pass filter time constant / s

0

1
project2

0.1 0.2 0.5 1 2 5 10

 low-pass filter time constant / s

0

1
project3

Figure 5: Classification performance as a function of feature low-pass filter time constant τ for
the orthogonalisation methods ’none’, ’proposed’, ’PCA’ and the combination of ’proposed’ with
’PCA’, in the three tested projects. The shaded area denotes the chance level.

3 Results

3.1 Influence of feature pre-processing

on classification performance

Time constant optimisation. Figure 5
shows the classification performance as a func-
tion of feature low-pass filter time constant τ
in all tested projects. The optimal value for
project 1 was 297 ms, resulting in a classifica-
tion performance of 81.8%. In project 2, the
optimal time constant was 250 ms with a per-
formance of 82.9%. In the third project, the
time constant τ was 8 s, leading to a classifica-
tion performance of 78.4%.
In all cases, the feature orthogonalisation im-

proved the performance. The maximum per-
formance was always achieved with the pro-
posed method for feature selection. Using
the PCA alone increased the performance only
marginally. Both methods in combination do
not give better performance results than the
proposed method alone.

Feature selection. Figure 6 shows the per-
formance of individual features in the three dif-
ferent projects. In project 1, the proposed fea-
ture selection method reduced the dimensional-
ity to 12 features. The performance of individ-
ual features ranged from 19.1% to 44.4%. 42.7%
of the selected features were velocity-related fea-
tures. In project 2, a set of 17 features was
found to be optimal; individual performance
ranged from 13% to 28.4%. 35.3% of the fea-
tures were velocity-related. In the last project,
only 9 features were sufficient for optimal clas-
sification, with individual performance between
26.3% and 48.2%. In this case, 66.7% of the
features were related to motion.

project1

10 20 30 40 50 60

time / s

straight
relaxed
forward

gestures

project2

20 40 60 80

time / s

lake

steam

rain

waves

ice

ocean

boil

thunder

project3

10 20 30 40 50 60 70

time / s

stand

beer

dance

xdance

windmill

Figure 7: Posterior class probability as a func-
tion of time for the test data, with the labelled
classes indicated by red lines.

3.2 Classification performance with

optimised parameter sets

Figure 7 shows the posterior probabilities as a
function of time. It can be noticed that classi-
fication errors mostly occurred at class transi-
tions. With the longer time constants of project
3, a lag of classification at each transition can
be seen.
The confusion matrix is shown in Figure 8.

In project 1, the least confusions were achieved
for the forward class. Typical confusions were
between the classes straight and relaxed, as
well as between gestures and straight. In
project 2, the least confusions were found for

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 124

0 0.2 0.4 0.6 0.8

o.lz
o.r

n.sx
o.vsy
n.rot
o.vrz
o.vz

n.vrot
o.vlz
o.lby

o.lx
o.rx
n.sy

o.vsz
o.rz

o.rby
o.vsx

n.vxy2
n.vz1

n.vxy3
n.vxy1

n.ymed
n.vz2

n.y
n.vz3

n.r3
n.sz
n.r2

n.r
n.z
o.z

n.r1
n.z75

n.zmed
n.z50
n.z25

project1

0 0.2 0.4 0.6 0.8

o.vsx
o.vsy

n.sy
o.vz

o.lby
o.r

o.lx
o.rby
o.vsz
o.vrz
o.vlz
n.sx
n.sz

o.z
n.r

n.vrot
o.rx

n.vz3
n.vz2
n.vz1

o.lz
o.rz

n.vxy3
n.vxy1
n.vxy2

n.z
n.zmed

n.z50
n.z75
n.z25

n.r1
n.r2
n.r3

project2

0 0.2 0.4 0.6 0.8

o.vsy
o.vsx
o.vlz

n.vrot
n.vxy3

o.r
n.vz3

n.sx
o.vsz

n.vxy2
o.vrz

n.vxy1
n.vz2

o.vz
n.vz1

n.sy
o.lby

o.lx
o.rx
o.rz

o.rby
o.z

n.r2
n.r3

n.r
n.r1

n.zmed
n.z50
n.z25
n.z75

o.lz
n.z

n.sz

project3

Figure 6: Classification performance of single features (thick bars) and the cumulative classifi-
cation performance (thin bars). Stars denote the features which were selected by the proposed
orthogonalisation method. Blue colours denote velocity-related features.

straight

relaxed

forward

gestures

project1

labelled

c
la

s
s
if
ie

d

st
ra

ig
ht

re
la
xe

d

fo
rw

ar
d

ge
st
ur

es

0

0.2

0.4

0.6

0.8

1
lake

steam

rain

waves

ice

ocean

boil

thunder

project2

labelled

c
la

s
s
if
ie

d

la
ke

st
ea

m
ra

in

w
av

es ic
e

oc
ea

n
bo

il

th
un

de
r

0

0.2

0.4

0.6

0.8

1

stand

beer

dance

xdance

windmill

project3

labelled

c
la

s
s
if
ie

d

st
an

d
be

er

da
nc

e

xd
an

ce

w
in
dm

ill

0

0.2

0.4

0.6

0.8

1

Figure 8: Confusion matrices (average posterior probability for each class in the test data set) of
the three different projects.

the classes boil, ocean and steam. The class
thunder was often confused with the classes
rain or steam. In the third project, more con-
fusions can be noticed. Most confusions can be
found for the classes xdance and windmill, and
between the classes beer and dance.

4 Discussion

The results show that a robust classification of
gestures and postures based on a low-level fea-
ture set is possible, even with a näıve Bayesian
classifier and a small feature space. The pre-
processing of features indicated that a orthog-
onalisation of the feature space in a statistical
sense is less important than the selection of fea-

tures with an optimal class separation. How-
ever, it is still unclear whether another order of
combination of orthogonalisation methods or a
dimension-reduction in the PCA would further
increase performance.

In this study, only number of low-level fea-
tures was used. A high-level feature space, e.g.,
skeleton modelling, might be beneficial for ro-
bust classification of complex and high-level ges-
tures. On the other hand, using such low-level
features does not require any model assump-
tions. An intermediate solution could be an ad-
vanced segmentation of the point cloud.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 125

5 Conclusions

In this study it was shown that even with
a small and low-level point-cloud based fea-
ture space a robust classification of gestures
and postures is possible. The tested applica-
tions covered research, art and entertainment,
with four to eight classes in each application.
The proposed method of feature-space opti-
misation by selecting a subset of the features
was shown to result in better classification per-
formance than a statistical orthogonalisation
method. Low-pass filtering of features with
application-specific time constants allowed for
a trade-off between stable classification and fast
reactions at class transitions. Classification per-
formance of approximately 80% was achieved in
all applications. Automatic classification of ges-
tures and postures for hearing research applica-
tions with the ‘subject-in-the-loop’, i.e., with a
behavioural feedback loop, seems feasible.

6 Acknowledgements

This study was funded by DFG research grant
1732 “Individualisierte Hörakustik” and by
“klangpol Netzwerk Neue Musik Nordwest”.
We would like to thank all test subjects who
participated in the training phase.

References

Ahmad Ashari, Iman Paryudi, and A Min
Tjoa. 2013. Performance comparison be-
tween näıve bayes, decision tree and k-nearest
neighbor in searching alternative design in an
energy simulation tool. Int. J. Adv. Comput.
Sci. Appl, 4(11).

Carlos Busso, Murtaza Bulut, Chi-Chun Lee,
Abe Kazemzadeh, Emily Mower, Samuel
Kim, Jeannette N Chang, Sungbok Lee, and
Shrikanth S Narayanan. 2008. Iemocap: In-
teractive emotional dyadic motion capture
database. Language resources and evaluation,
42(4):335.

Miha Ciglar. 2008. ” 3rd. pole”-a composition
performed via gestural cues. In NIME, pages
203–206.

Marco Donnarumma. 2011. Xth sense: a
study of muscle sounds for an experimental
paradigm of musical performance. In ICMC.

William T Freeman and Craig D Weissman.
1997. Hand gesture machine control system,
January 14. US Patent 5,594,469.

Giso Grimm, Tobias Herzke, Daniel Berg,
and Volker Hohmann. 2006. The Master
Hearing Aid – a PC-based platform for al-
gorithm development and evaluation. Acta
Acustica united with Acustica, 92:618–628.

Giso Grimm, Tobias Herzke, and Volker
Hohmann. 2009. Application of linux audio in
hearing aid research. In Frank Neumann, ed-
itor, Proceedings of the Linux Audio Confer-
ence, pages 61–66, Parma, Italy. Istituzione
Casa della Musica.

Amit Gupte, Sourabh Joshi, Pratik Gadgul,
Akshay Kadam, and A Gupte. 2014. Compar-
ative study of classification algorithms used
in sentiment analysis. International Journal
of Computer Science and Information Tech-
nologies, 5(5):6261–6264.

Tobias Herzke, Hendrik Kayser, Frasher
Loshaj, Giso Grimm, and Volker Hohmann.
2017. Open signal processing platform for
hearing aid research (openMHA). In Proceed-
ings of the Linux Audio Conference.

Renato de Souza Melo, Andrea Lemos, Carla
Fabiana da Silva Toscano Macky, Maria
Cristina Falcão Raposo, and Karla Mônica
Ferraz. 2015. Postural control assessment in
students with normal hearing and sensorineu-
ral hearing loss. Brazilian journal of otorhi-
nolaryngology, 81(4):431–438.

Richard Paluch, Matthias Latzel, and Markus
Meis. 2015. A new tool for subjective assess-
ment of hearing aid performance: Analyses of
interpersonal communication. In Proceedings
of the International Symposium on Auditory
and Audiological Research, volume 5, pages
453–460.

Jan Richarz, Thomas Plotz, and Gernot A
Fink. 2008. Real-time detection and interpre-
tation of 3d deictic gestures for interaction-
with an intelligent environment. In Pattern
Recognition, 2008. ICPR 2008. 19th Interna-
tional Conference on, pages 1–4. IEEE.

Jamie Shotton, Toby Sharp, Alex Kipman,
Andrew Fitzgibbon, Mark Finocchio, Andrew
Blake, Mat Cook, and Richard Moore. 2013.
Real-time human pose recognition in parts
from single depth images. Communications
of the ACM, 56(1):116–124.

Shane Torbert. 2012. Applied computer sci-
ence. Springer.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 126

VoiceOfFaust

Bart Brouns

studio magnetophon

Biesenwal 3

Maastricht, Netherlands, 6211 AD

bart@magnetophon.nl

Abstract

VoiceOfFaust turns any monophonic sound into a
synthesizer, preserving the pitch and spectral
dynamics of the input.

There are 7 synthesizer and two effect algorithms:

• a classic channel vocoder

• a couple of vocoders based on oscillators

with controllable formants:

◦ CZ resonant oscillators

◦ PAF oscillators

◦ FM oscillators

◦ FOF oscillators

• FM with modulation by the voice

• ring-modulation

• Karplus-Strong used as an effect

• Phase modulation used as an effect

Keywords

Synthesis, Signal Processing, Audio Plugins.

1 Introduction

VoiceOfFaust turns any monophonic sound into a
synthesizer, preserving the pitch and spectral
dynamics of the input. It is written in Faust [1], and
uses a pitch tracker in Pure Data [2].

It consists of:

• an external pitch tracker: helmholtz~ [3] by

Katja Vetter.

• a compressor/expander, called qompander

[4], ported to Faust.

There are 7 synthesizer and two effect algorithms:

• a classic channel vocoder

• a couple of vocoders based on oscillators

with controllable formants:

◦ CZ resonant oscillators

◦ PAF oscillators

◦ FM oscillators

◦ FOF oscillators

• FM with modulation by the voice

• ring-modulation

• Karplus-Strong used as an effect

• Phase modulation used as an effect

The features include:

• all oscillators are synchronized to a single

saw-wave, so they stay in phase, unless you
don't want them to

• powerful parameter mapping system lets

you set different parameter values for each
band, without having to set them all
separately

• formant compression/expansion: Make the

output spectrum more flat or more resonant,
at the twist of a knob.

• flexible in and output routing: change the

character of the synth.
• all parameters, including routing, but except

the octave, are step-less, meaning any
'preset' can morph into any other.

• multi-band deEsser and reEsser

• optionally use as a master-slave pair:

The master is a saw-oscilator driven by the
(external) pitchtacker, and the slaves
contain everything else, synced to the
master.
This makes it possible to run the slaves as
plugins.

• configuration file:

Through this file, lot's of options can be set
at compile time, allowing you to adapt the
synth to the amount of CPU power and
screen real-estate available.
Some of the highlights:

• number of bands of the vocoders

• number of output channels

• whether we want ambisonics output

• whether a vocoder has one set of

oscillators, or a separate set of oscillators
per output.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 127

2 Vocoders

2.1 Common features of all vocoders

2.1.1 Parameter mapping system

The parameters for the vocoders use a very
flexible control system:

Each parameter has a bottom and a top knob,
where the bottom changes the value at the lowest
formant band, and the top the value at the highest
formant band.

The rest of the formant bands get values that are
evenly spaced in between.

For some of them that means linear spacing, for
others logarithmic spacing.

For even more flexibility there is a parametric
mid:

You set it's value and band number and the
parameter values are now:

• 'bottom' at the lowest band, going to:

• 'mid value' at band nr 'mid band', going to:

• 'top value' at the highest band.

Kind of like a parametric mid in equalizers.
If that's all a bit too much, just set ``para`` to 0

in the configuration file, and you'll have just the
top and bottom settings.

2.1.2 Formant compression/expansion

Scale the volume of each band relative to the
others:

• 0 = all bands at average volume

• 1 = normal

• 2 = expansion

expansion here means:
• the loudest band stays the same

• soft bands get softer

Because low frequencies contain more energy than
high ones, a lot of expansion will make your
sound duller.
To counteract that, you can apply a weighting
filter, settable from

• 0 = no weighting

• 1 = A-weighting

• 2 = ITU-R 468 weighting

2.1.3 DeEsser

To tame harsh esses, especially when using some
formant compression/expansion, there is a
deEsser:

It has all the usual controls, but since we already
are working with signals that are split up in bands,
with known volumes,
it was implemented rather differently:

• multiband, yet much cheaper,

• without additional filters, even for the

sidechain,
• and with a dB per octave knob for the

sidechain, from 0dB/oct (bypass), to
60dB/oct (fully ignore the lows).

It also has a (badly named) noise strenght
parameter: it uses the fidelity parameter from the
external pitchtracker to judge if a sound is an S.
When you turn it up, the deEsser gets disabled
when the pitchtracker claims a sound is pitched.
See [3] for more info.

2.1.4 ReEsser

Disabled by default, but can be enabled in the
configuration file.
It replaces or augments the reduced highs caused
by the deEsser.

2.1.5 DoubleOscs

This is a compile option, with two settings:
• 0 = have one oscillators for each formant

frequency
• 1 = creates a separate set of oscillators for

each output channel, with their phase
modulations reversed.

2.1.6 In and output routing

The vocoders can mix their bands together in
various ways:
We can send all the low bands left and the high
ones right, we can alternate the bands between left
and right, we can do various mid-side variations
we can even do a full Hadamard matrix.
All of these, and more, can be cross-faded
between.
In the classicVocoder, a similar routing matrix sits
between the oscillators and the filters.

2.1.7 Phase parameters

Since all1 formants are made by separate
oscillators that are synced to a single master
oscillator, you can set their phases relative to each
other.
This allows them to sound like one oscillator
when they have static phase relationships, and to
sound like many detuned oscillators when their
phases are moving.

1 except for the classicVocoder.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 128

Together with the output routing, it can also create
interesting cancellation effects.
For example, with the default settings for the
FMvocoder, the formants are one octave up from
where you'd expect them to be.
When you change the phase or the output routing,
they drop down.

These settings are available:
• static phases

• amount of modulation by low pass filtered

noise
• the cutoff frequency of the noise filters

2.2 Features of individual vocoders

2.2.1 ClassicVocoder

Block-diagram:
https://magnetophon.github.io/VoiceOfFaust/imag
es/classicVocoder-svg/process.svg

A classic channel vocoder, with:
• a "super-saw" that can be cross-faded to a

“super-pulse", free after Adam Szabo [5].
 * flexible Q and frequency setting for the filters
 * an elaborate feedback and distortion matrix
around the filters

The gui of the classicVocoder has two sections:
First oscillators, containing the parameters for the
carrier oscillators.
These are regular virtual analog oscillators, with
the following parameters:

• cross-fade between oscillators and noise

• cross-fade between sawtooth and pulse

wave
• width of the pulse wave

• mix between a single oscilators and

multiple detuned ones
• detuning amount

Second filters, containing the parameters for the
synthesis filters:

• bottom, mid and top set the resonant

frequencies
• Q for bandwidth

• a feedback matrix. each filter gets fed back

a variable amount of:
◦ itself

◦ it's higher neighbor

◦ it's lower neighbor

◦ all other filters

◦ distortion amount

◦ DC offset

2.2.2 CZvocoder

Block-diagram:
https://magnetophon.github.io/VoiceOfFaust/imag
es/czVocoder-svg/process.svg

This is the simplest of the vocoders made out of
formant oscilators.
The oscillators where ported from a pd patch by
Mike Moser-Booth [6].

You can adjust:
• the formant frequencies

• the phase parameters

2.2.3 PAFvocoder

Block-diagram:
https://magnetophon.github.io/VoiceOfFaust/imag
es/PAFvocoder-svg/process.svg

The oscillators where ported from a pd patch by
Miller Puckette [7].

It also has frequencies and phases, but adds index
for brightness.

2.2.4 FMvocoder

Block-diagram:
https://magnetophon.github.io/VoiceOfFaust/imag
es/FMvocoder-svg/process.svg

The oscillators where based on code by Chris
Chafe [8].

Same parameters, different sound.

2.2.5 FOFvocoder

Block-diagram:
https://magnetophon.github.io/VoiceOfFaust/imag
es/FOFvocoder-svg/process.svg

Original idea by Xavier Rodet [9].
based on code by Michael Jørgen Olsen [10].
Also has frequencies and phases, but adds:

• skirt and decay:

Two settings that influence the brightness
of each band

• Octavation index

Normally zero. If greater than zero,
lowers the effective frequency by
attenuating odd-numbered sinebursts.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 129

https://magnetophon.github.io/VoiceOfFaust/images/classicVocoder-svg/process.svg
https://magnetophon.github.io/VoiceOfFaust/images/classicVocoder-svg/process.svg
https://magnetophon.github.io/VoiceOfFaust/images/FOFvocoder-svg/process.svg
https://magnetophon.github.io/VoiceOfFaust/images/FOFvocoder-svg/process.svg
https://magnetophon.github.io/VoiceOfFaust/images/FMvocoder-svg/process.svg
https://magnetophon.github.io/VoiceOfFaust/images/FMvocoder-svg/process.svg
https://magnetophon.github.io/VoiceOfFaust/images/PAFvocoder-svg/process.svg
https://magnetophon.github.io/VoiceOfFaust/images/PAFvocoder-svg/process.svg
https://magnetophon.github.io/VoiceOfFaust/images/czVocoder-svg/process.svg
https://magnetophon.github.io/VoiceOfFaust/images/czVocoder-svg/process.svg

Whole numbers are full octaves, fractions
transitional.
Inspired by an algorithm in Csound [11].

3 Other synthesizers

These are all synths that are not based on
vocoders.

3.1 Features of individual synths

3.1.1 FMsinger

Block-diagram:
https://magnetophon.github.io/VoiceOfFaust/imag
es/FMsinger-svg/process.svg

A sine wave that modulates its frequency with the
input signal.
There are five of these, one per octave, and each
one has:

• volume

• modulation index

• modulation dynamics

This fades between 3 settings:
◦ no dynamics: the amount of

modulation stays constant with
varying input signal

◦ normal dynamics: more input volume

equals more modulation
◦ inverted dynamics: more input equals

less modulation.

3.1.2 CZringmod

Block-diagram:
https://magnetophon.github.io/VoiceOfFaust/imag
es/CZringmod-svg/process.svg

Ringmodulates the input audio with emulations of
Casio CZ oscillators.
Again five octaves, with each octave containing
three different oscillators:

• square and pulse, each having volume and

index (brightness) controls
• reso, having a volume and a resonance

multiplier:
This is a formant oscillator, and it's
resonant frequency is multiplied by the
formant setting top right.
It is intended to be used with an external
formant tracker.

• There is a global width parameter that

controls a delay on the oscillators for one
output.

The delay time is relative to the
frequency.

Because this delay is applied to just the
oscillators, and before the

ringmodulation, the sound of both output
channels arrives simultaneously.

This creates a mono-compatible widening
of the stereo image.

3.1.3 KarplusStrongSinger

Block-diagram:
https://magnetophon.github.io/VoiceOfFaust/imag
es/KarplusStrongSinger-svg/process.svg

This takes the idea of a Karplus Strong algorithm
[12], but instead of noise, it uses the input signal.
The feedback is ran trough an allpass filter,
modulated with an LFO; adapted from the
nonLinearModulator in instrument.lib.
To keep the level from going out of control, there
is a limiter in the feedback path.
Parallel to the delay is a separate
nonLinearModulator.
Globally you can set:

• octave

• output volume

• threshold of the limiter

For the allpass filters you can set:
• amount of phase shift

• difference in phase shift between left and

right (yeah, I lied, there are two of
everything)

• amount of modulation by the LFO

• frequency of the LFO, relative to the main

pitch
• phase offset between the left and right

LFO's.
To round things off there is a volume for the dry
path and a feedback amount for the delayed one.

3.1.4 KarplusStrongSingerMaxi

Block-diagram:
https://magnetophon.github.io/VoiceOfFaust/imag
es/KarplusStrongSingerMaxi-svg/process.svg

To have more voice control of the spectrum, this
one has a kind of vocoder in the feedback path.
Since we don't want the average volume of the
feedback path changing much, only the volumes
relative to the other bands, the vocoder is made
out of equalizers, not bandpass filters.
You can adjust it's

• strength: from bypass to 'fully equalized'

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 130

https://magnetophon.github.io/VoiceOfFaust/images/KarplusStrongSingerMaxi-svg/process.svg
https://magnetophon.github.io/VoiceOfFaust/images/KarplusStrongSingerMaxi-svg/process.svg
https://magnetophon.github.io/VoiceOfFaust/images/KarplusStrongSinger-svg/process.svg
https://magnetophon.github.io/VoiceOfFaust/images/KarplusStrongSinger-svg/process.svg
https://magnetophon.github.io/VoiceOfFaust/images/CZringmod-svg/process.svg
https://magnetophon.github.io/VoiceOfFaust/images/CZringmod-svg/process.svg
https://magnetophon.github.io/VoiceOfFaust/images/FMsinger-svg/process.svg
https://magnetophon.github.io/VoiceOfFaust/images/FMsinger-svg/process.svg

• cut/boost; steplessly vary between

◦ -1 = all bands have negative gain,

except the strongest, which is at 0
◦ 0 = the average gain of the bands is 0.

◦ +1 = the all bands have positive gain,

except the weakest, which is at 0
• top and bottom frequencies

• Q factor

4 Master-slave

This is a workaround for the need for an
external pitchtracker, making it possible to use the
synths and effects as plugins.
It has the nice side effect that your sounds become
fully deterministic:
because a pitchtracker will always output slightly
different data, or at least at slightly different
moments relative to the audio, the output audio
can sometimes change quite a bit from run to run.
The master is a small program that receives the
audio and the OSC messages from the external
pitch tracker, and outputs:

• a copy of the input audio

• a saw wave defining the pitch and phase

• the value of fidelity, from the pitch

tracker, as audio.
The slaves are synths and effects that input the
above three signals.
The outputs of the master can be recorded into a
looper or DAW, and be used as song building
blocks, without needing the pitch tracker.
This makes it possible to switch synths, automate
parameters, etc.

5 Strengths and weaknessesses of Faust

The Faust language has some big advantages.
The common perks of the language apply. For me,
the biggest ones are:

• Quick implementation of ideas.

• If it sounds right, it is right. There won’t

be any crashes, memory leaks or other
bugs.

• Write once, deploy everywhere.

• The block diagrams help with debugging

and documentation.
• Fast running code.

• Automatic parrallelisation.

In this project it was also very helpful to be able
to easily parameterize things like the number of
bands. Related: the input and output routing
wouldn’t be nearly as easy and fun to implement

in most languages, as they lean heavily on Fausts
splitting and combinatory operators.

Since this idea has been implemented in
PureData earlier, it makes sense to mention two
big advantages over that:

1. Text-interface, enabling quicker notation
of ideas, version-control and a mouseless
workflow.

2. Single sample feedback loops, as used in
the classicVocoder.

The downsiders of Faust to me are a steep
learning curve and error messages that are often
very verbose and unclear.

6 Use cases

The author has used VoiceOfFaust mostly for
voice transformation in a musical context, but it
has also come in handy to turn a bass-guitar into a
synth [14].

7 Deployment

VoiceOfFaust heavily leans on knowing the
pitch of the input signal. Since it’s not yet
possible to do decent pitchtracking in Faust, an
external pitchtracker which sends the pitch trough
OSC is used.

This limits the usable architectures to the ones
supporting OSC.

Specifically, it would be nice to have
VoiceOfFaust as a plugin within a DAW, but that
is not directly possible.

The master slave architecture is a usable
workaround.

To compile VoiceOfFaust, run one of the
compilation scripts that support OSC, for
example:

faust2jack -osc FMvocoder.dsp
To run it, you can use one of the scripts in the

launchers directory, for example:
./FMvocoder_PT
This will start puredata with the pitchtracker

patch plus a synth, and connect everything trough
jack.

8 Acknowledgements

Many thanks to the developers of Faust [1] and
Pure Data [2] for making dsp so accesable yet
powerfull.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 131

References

[1] http://faust.grame.fr

[2] https://puredata.info

[3]
http://www.katjaas.nl/helmholtz/helmholtz.html

[4]
http://www.katjaas.nl/compander/compander.ht
ml

[5]
https://www.nada.kth.se/utbildning/grukth/exjob
b/rapportlistor/2010/rapporter10/szabo_adam_10
131.pdf

[6]
http://forum.pdpatchrepo.info/topic/5992/casio-
cz-oscillators

[7] http://msp.ucsd.edu/techniques/v0.11/book-
html/node96.html

[8] http://chrischafe.net/glitch-free-fm-vocal-
synthesis

[9]
http://anasynth.ircam.fr/home/english/media/sin
ging-synthesis-chant-program

[10]
https://ccrma.stanford.edu/~mjolsen/220a/fp/Fof
let.dsp

[11]
https://csound.github.io/docs/manual/fof2.html

[12] https://en.wikipedia.org/wiki/Karplus
%E2%80%93Strong_string_synthesis

[13]
https://github.com/magnetophon/VoiceOfFaust

[14]
http://magnetophon.nl/sounds/BucketBoyz/Shini
ngBrightLight.mp3

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 132

http://magnetophon.nl/sounds/BucketBoyz/ShiningBrightLight.mp3
http://magnetophon.nl/sounds/BucketBoyz/ShiningBrightLight.mp3
https://github.com/magnetophon/VoiceOfFaust
https://en.wikipedia.org/wiki/Karplus%E2%80%93Strong_string_synthesis
https://en.wikipedia.org/wiki/Karplus%E2%80%93Strong_string_synthesis
https://csound.github.io/docs/manual/fof2.html
https://ccrma.stanford.edu/~mjolsen/220a/fp/Foflet.dsp
https://ccrma.stanford.edu/~mjolsen/220a/fp/Foflet.dsp
http://anasynth.ircam.fr/home/english/media/singing-synthesis-chant-program
http://anasynth.ircam.fr/home/english/media/singing-synthesis-chant-program
http://chrischafe.net/glitch-free-fm-vocal-synthesis
http://chrischafe.net/glitch-free-fm-vocal-synthesis
http://msp.ucsd.edu/techniques/v0.11/book-html/node96.html
http://msp.ucsd.edu/techniques/v0.11/book-html/node96.html
http://forum.pdpatchrepo.info/topic/5992/casio-cz-oscillators
http://forum.pdpatchrepo.info/topic/5992/casio-cz-oscillators
https://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2010/rapporter10/szabo_adam_10131.pdf
https://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2010/rapporter10/szabo_adam_10131.pdf
https://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2010/rapporter10/szabo_adam_10131.pdf
http://www.katjaas.nl/compander/compander.html
http://www.katjaas.nl/compander/compander.html
http://www.katjaas.nl/helmholtz/helmholtz.html
https://puredata.info/
http://faust.grame.fr/

On the Development of C++ Instruments

Victor LAZZARINI
Maynooth University

Maynooth
Co. Kildare
Ireland,

Victor.Lazzarini@nuim.ie

Abstract

This paper brings together some ideas regarding
computer music instrument development with re-
spect to the C++ language. It looks at these from
two perspectives, that of the development of self-
contained instruments with the use of a class library
and that of programming of plugin modules for a
music programming system. Working code exam-
ples illustrate the paper throughout.

Keywords

Computer Music Instruments, C++, Music Pro-
gramming

1 Introduction

Whatever we do, if we are in the business of
making music solely or primarily with comput-
ers, one way or another, at some point, we will
meet computer music instruments[Lazzarini,
2017a] . Whether we are making electroacous-
tic music, algorithmic composition, live coding,
tracking, creating pop tunes, we will find our-
selves manipulating these. They can present
themselves through music programming sys-
tems [Lazzarini, 2013] , such as Csound [Laz-
zarini et al., 2016] or Faust [Orlarey et al., 2004],
or as software synthesizers, plugins, audio pro-
cessing programs, etc. There is a wide variety
of forms. In this paper, I would like to contem-
plate one of these that involves libraries, com-
pilers, and the C++ language.
C++ was once described as having “the ele-

gance, the power, and the simplicity of a hand
grenade”, which to me, as a die-hard pure
C programmer sounds about right. However,
I must admit that its latest standards, ISO
C++11[ISO/IEC, 2011] , C++14[ISO/IEC,
2014] , and the forthcoming C++17,[ISO/IEC,
2017] arriving in quick succession as they are,
are making this monstrous language more at-
tractive. Now finally we can write a nice lambda
and pass it to a map to process a list, for
example. The standard library, borne out of

the much appreciated, much maligned, stan-
dard template library (STL), has actually be-
come quite usable. There is still enough com-
plexity for one to get entangled, however, but
with moderation and good design, we can make
it work for us.
This paper will examine two approaches of

C++ instrument making. The first one is based
on employing a signal processing library to write
simple, straightforward, programs that can be
ported to various platforms. The second is to
create components, plugins, for Csound using
a framework that sits atop the system imple-
mentation in C. It is mostly directed at com-
puter music practitioners who can converse in
C/C++, and it will be fully illustrated by work-
ing code, which can also be found somewhere in
an online repo (links will be given).

2 AuLib Instruments

Towards the end of 2016, I decided to collect
a number of digital signal processing (DSP) al-
gorithms that I had been writing or studying
throughout the years into a simple, lightweight,
flexible C++ library, called AuLib1. One of my
aims was to document these uniformly in effi-
cient and readable code so that they could be-
come somewhat of a reference for me and others.
I was also rewriting some of my teaching mate-
rials and this became part of them. Following
a number of refactoring steps, I settled on a de-
sign that followed modern C++ standards in
employing the standard library as much as pos-
sible to handle resources and keeping the code
as simple and lightweight as possible.
When designing a class library, there are two

distinct possibilities (amongst the various deci-
sions we have to make) with respect to object hi-
erarchies. One is that we can define a base class
for DSP objects that has a shared processing in-
terface, that is one (or more) DSP methods that

1github.com/vlazzarini/aulib/

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 133

are specialised in derived classes. A means of
connecting objects is provided separately from
this, and once connected, we can place the ob-
jects in a list of references or pointers to the base
class and call the processing method of each in
turn to get an output signal. This is what is at
the heart of processing engines such as the one
in PD, Csound, Faust. If the aim is to create a
library whose main objective is to be employed
as an engine for some higher-level programming
or patching system, this is the way to go. The
Sound Object Library[Lazzarini, 2000] was de-
signed this way and it really paid off when it
was later wrapped up in Python.

The alternative is to relax this constraint and
not provide a unified processing interface, leave
it to derived classes to define their own. The
advantage of this is that each class can have dif-
ferent ways to handle input parameters to pro-
cessing methods, depending on what they are
supposed to do. So an oscillator might have am-
plitude and frequency as parameters, in scalar
or vectorial forms, or no parameters at all (for
say fixed values of amplitude and frequency).
It can provide a bunch of overloads to han-
dle each case. A filter will have an input sig-
nal and optional parameters, depending on the
type. A frequency-domain object might take a
spectral frame. This, on one hand, simplifies
connections (we can define them at the process-
ing point, rather than separately), and on the
other makes it hard to use in sound engine appli-
cations where the interface needs to be shared.

Given that the objective here for this library
was to provide a working context for a di-
verse set of algorithms, and to provide a flex-
ible means of using them in programs, I have
opted for the second approach. This would
provide greater freedom to create exactly the
right form to hold each DSP formulation. Now,
given this context, it is still desirable to use the
class structure afforded by C++ to re-use code
fully. This meant to design a base class that
was a container for an audio signal, providing
the typical fundamental operations we would
like to perform on it. For me, this meant: scal-
ing (multiplying by a scalar), offsetting (adding
a scalar), mixing (adding a vector/signal) and
ring modulating (multiplying by a vector/sig-
nal). Granted, in an audience of music and
audio developers, we are likely to find multiple
definitions of what fundamental operations on
signals are, but I am drawing the line here (ok
maybe not quite, but let’s keep at this for the

moment). Attributes such as number of chan-
nels (interleaved), sampling rate and vector size
are also needed, and of course the audio signal
vector itself.
This makes up the AudioBase class of the li-

brary, which begins like this:

class AudioBase {
protected:

uint32_t m_nchnls;
uint32_t m_vframes;
std::vector <double > m_vector;
double m_sr;
uint32_t m_error;

Having a fundamentally neutral base, with no
hint of what a DSP object might want to im-
plement allows me to use it for absolutely ev-
erything I can think of, or almost. So of the 50-
odd classes currently sitting in the library, only
four are not derived from AudioBase (fig. 1).
It is specialised for common time-domain oper-
ations (oscillators, filters, envelopes, etc.), for
spectral processing (short-time Fourier trans-
form, phase vocoder), for function tables, for
audio input/output, and even for higher-level
instrument models. Code re-use is truly max-
imised.

3 Developing Instruments

A detailed description of the library design is
offered elsewhere [Lazzarini, 2017c]. In this pa-
per, we will to look at using it for C++ instru-
ment development. So let’s explore some cases2.

3.1 Basic examples

We begin with a trivial case: a ping instrument,
written as a command-line program. This just
plays a 440Hz, -6dB sine wave to the output for
a couple of seconds. The code, without its safety
checks etc, can be abbreviated as this seven-
liner:

int main() {
Oscil sig (0.5 ,440);
SoundOut output("dac");
for (int i = 0; i < def_sr * 2;

i += def_vframes)
output.write(sig.process ());

return 0;
}

Frequency and amplitude are not changing,
so I pick the process() overload with no pa-
rameters and stick its return value straight into
the output write() method. The two classes

2all examples available in the examples directory of
the AuLib repository.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 134

Figure 1: The AuLib class library

share the base, but they have distinctly-named
and defined processing methods.
Let’s try something slightly less simplistic.

A similarly-placed instrument but now with a
sweeping resonant filter acting on a sawtooth
wave:

int main() {
TableSet saw(SAW);
BlOsc sig(0.5, 440., saw);
ResonR fil (1000, 1.);
Balance bal;
SoundOut output("dac");

for (int i = 0; i < def_sr *10;
i += def_vframes) {
sig.process ();
fil.process(sig ,
1000. + 400. * i / def_sr);

bal.process(fil , sig);
output.write(bal);

}
return 0;

}

TableSet creates a set of tables for a band-
limited oscillator. The filter centre frequency is

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 135

varied over time, and we feed its output into a
balancing operator that uses a comparator to
keep amplitudes under control.
To demonstrate how the base class-defined

operations can be useful, we have a simple FM
example

int main() {
double fm = 440., fc = 220., ndx = 5.;
Oscili mod , car;
SoundOut output("dac");
for (int i = 0; i < def_sr *10;

i += def_vframes) {
mod.process(ndx * fm , fm);
car.process (0.5, mod += fc);
output.write(car);

}
return 0;

}

Note the use of the overloaded sum-
assignment operator in mod += fc to add the
modulator signal to the carrier (scalar) fre-
quency.

3.2 Instrument Models

Clearly, the examples above are more demon-
strations of how instruments can be set up. This
would, in a more realistic scenario, be placed
in plugin or GUI application wrapping code,
where they can become useful. The AuLib also
provides some modelling of instruments and in-
stances of these. We can show how these work
in a straightforward application case: a poly-
phonic MIDI synthesiser.
The AuLib class Note provides the base for

an instance of a sound object, which can be
for example, a synthesiser voice. This holds
basic parameters such as amplitude, cps pitch,
etc. that we can use to control a sound object.
To use it, we derive our own, and specialise its
dsp method, placing our sound processing code
there.

class SineSyn : public Note {
// signal processing objects
Adsr m_env;
Oscili m_osc;

// DSP override
virtual const SineSyn &dsp() {

if (!m_env.is_finished ())
set(m_osc(m_env(), m_cps));

else clear ();
return *this;

}
...

The sound synthesis is again, trivial, to
keep the example focused: an envelope and a
sine wave oscillator. But note that we have

a new convenient interface: using the classes
operator(), we connect objects more easily one
into another. This syntax reinforces the connec-
tion metaphor, envelope, alongside pitch, into
oscillator. Given that the class is derived from
AudioBase, we set its vector to the result of the
processing.
Additionally, we want to specialise two other

methods: for sound onset and sound termina-
tion:

// note off processing
virtual void off_note () {

m_env.release ();
}

// note on processing
virtual void on_note () {

m_env.reset(m_amp , 0.01,
0.5, 0.25 * m_amp , 0.01);

}

This plus the constructor completes our Note-
derived class. Now we want to model the whole
synthesiser, not just its voices. To do this, we
can use the Instrument template class, instan-
tiated with the required number of voices and
our note class:

Instrument <SineSyn > synth (8);

An important aspect of this class is that it
has a dispatch() method that takes in five pa-
rameters (message type, channel, data1, data2,
time stamp) and responds to two message types
(NOTE ON, NOTE OFF). While these are the
same as the MIDI channel messages, we are
just re-using the metaphor here. The call to
dispatch() does not need to originate from
MIDI or be limited to the usual MIDI data
ranges. Specialisations of instrument can re-
implement message handling to allow for other
types. Instrument also handles polyphony us-
ing last-note priority, and this can also be over-
riden in derived classes.
Given that the example will use MIDI input,

the library supports a simple MIDI listener class
that takes an Instrument object (or from any
type implementing dispatch() and process()
and responds to messages. The complete pro-
gram becomes very straightforward (trivial sig-
nal handler implementation omitted):

int main() {
int dev;
Instrument <SineSyn > synth (8);
SoundOut out("dac");
MidiIn midi;
std:: signal(SIGINT , signal_handler);

std::cout <<

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 136

"Available MIDI inputs :\n";
for(auto &devs:

midi.device_list ())
std::cout << devs << std::endl;

std::cout << "choose a device: ";
std::cin >> dev;

if (midi.open(dev) ==
AULIB_NOERROR) {

std::cout <<
"running ...
(use ctrl -c to close)\n";

while (running)
// listen to midi on
// behalf of synth
out(midi.listen(synth));

} else
std::cout <<
"error opening device ...\n";

std::cout << "... finished \n";
return 0;

}

Again, with a few lines of code, we can get
a basic MIDI synthesiser instrument. Although
the synthesis is simple, it can be shown that
the effort involved in more complex examples
scales well. It is just a case of using other signal
processing objects in different arrangements.

4 Csound Plugins

The second case of C++ instrument develop-
ment we will look at focuses on creating com-
ponents (plugins) that can be employed in a mu-
sic programming language. Unit generators in
Csound are known as opcodes and the system
has a well-document C interface for the pur-
pose of adding new ones of these to it. It also
has a C++ base class that has been used for
a small number of opcode plugin libraries that
come with the system.
With the intention of enabling a more com-

plete and well-integrated C++ support for plu-
gin opcode development, I have introduced
the Csound Plugin Opcode Framework3 CPOF
(pronounced see-pough or cipó = vine in Por-
tuguese4). The actual framework part of it
is fairly light, consisting of two template base
classes, but it also contains an extensive set
of utility classes that wrap Csound C code for
C++ use in a very idiomatic way (table 1).
CPOF is discussed extensively in [Lazzarini,
2017b].

3available as part of Csound, github.com/csound/
csound, with code examples in the examples/plugin di-
rectory.

4as in: C++ gives you enough vine, or rope, for you
to either hoist yourself up a tree, or hang yourself fairly
decently.

Class Description

Csound The Csound engine
Params Opcode parameters
AudioSig Audio signals
Fsig Spectral signals
Pvframe<T> Spectral data frames
Pvbin<T> Spectral data bins
Vector<T> Array variables
Table Function tables
AuxMem<T> Dynamic memory
Thread Multithreading
Plugin<N,M> Plugin base class
FPlugin<N,M> Spectral plugin base class

Table 1: Classes provided by CPOF.

5 Plugin Examples

The Csound language has a variety of internal
data types that its opcodes can process. We will
look at each one of these with a programming
example.

5.1 Init-time opcodes

In Csound, code that is run only once per in-
stantiation (or again on explicit re-initisation)
employs init-time variables. These are scalar
types holding a floating-point number (the
MYFLT type defined by the system). Plugin op-
codes for these types are derived from Plugin
and are instantiated templates taking the num-
ber of output and input arguments (respec-
tively) as parameters. The following examples
uses the standard library Gaussian generator to
produce a random number using the normal dis-
tribution. The first input argument is the mean,
followed by the deviation, and the seed:

#include <plugin.h>
struct Gauss :

csnd::Plugin <1, 3>{
std:: normal_distribution <MYFLT > norm;
std:: mt19937 gen;

init init (){
csnd:: constr (&norm , inargs [0],

inargs [1]);
csnd:: constr (&gen , inargs [2]);
outargs [0] = norm(gen);
csnd::destr (&norm);
csnd::destr (&gen);

}
};

Note that because Csound instantiates the
plugin object and it does not know anything
about C++ constructors, we need to explicitly
construct the objects norm and gen. When we

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 137

are done, we need to destruct them as they are
likely to have allocated resources, which we do
not want to be left dangling. The Plugin base
class gives us the inargs and outargs objects,
which contain the input and output arguments
respectively.
In order for the plugin to be added to

Csound’s collection of opcodes, we need to
register it. To do this, we implement the
csnd::on load() function, where we place
a call to the csnd::plugin<T>() template
method, passing the argument types ("i") and
the action time of the opcode (thread::i), as
well as the opcode name we will use (”guas-
sian”):

#include <modload.h>
void csnd:: on_load(Csound

*csound) {
csnd::plugin <Gauss >(csound , "gaussian",

"i", "iii", csnd:: thread ::i);
}

5.2 Control-rate opcodes

The next data type we can tackle is the one used
control-rate variables (k). This is also a scalar,
but now the opcode is active at performance
time (as well as init). A control-rate version of
the gaussian opcode would look like this:

struct GaussP :
csnd::Plugin <1, 3>{
std:: normal_distribution <MYFLT >

norm;
std:: mt19937 gen;

int init (){
csnd:: constr (&norm , inargs [0],

inargs [1]);
csnd:: constr (&gen , inargs [2]);
csound ->plugin_deinit(this);
return OK;

}

int deinit (){
csnd::destr (&norm);
csnd::destr (&gen);
return OK;

}

int kperf() {
outargs [0] = norm(gen);
return OK;

}
};

We can see that we now supplied the kperf()
that will be called repeatedly during perfor-
mance. Another difference is that we have
to provide a deinit() to call the destructors,
which will be called when performance ends.
This method needs to be registered separately

with Csound through the plugin deinit()
template function. We register this version of
the opcode with:

csnd::plugin <GaussP >(csound ,"gaussian",
"k", "iii", csnd:: thread ::ik);

5.3 Audio-rate opcodes

For audio signals, we need to implement the
aperf() method. The variable now is a vector,
so we have to use an AudioSig object to hold
it. The following example shows an aperf()
method that can be added to GaussianPerf to
implement an audio rate opcode:

int aperf (){
csnd:: AudioSig out(this , outargs (0));
for(auto &sample : out)

sample = norm(gen);
return OK;

}

The same class can then be registered for an
audio-rate output:

csnd::plugin <GaussP >(csound , "gaussian",
"a", "iii", csnd:: thread ::ia);

5.4 Spectral signals

Spectral signals in Csound are carried from op-
code to opcode using fsig variables. These are
self-describing variables holding one frame of
frequency-domain data, plus associated infor-
mation about the stream. In CPOF, we manip-
ulate these using the pv stream class. Similarly
to audio signals we can get the fsig data off argu-
ments into objects of these types for processing.
An opcode is responsible for initialising its own
output stream, which we can do at init time.
Stream frames can be decomposed in separate
bins held by pv bin objects.

The example below shows a plugin that im-
plements spectral tracing [Wishart, 1996] de-
fined as retaining only the loudest N bins in
each frame. Some important aspects to note
about this code: (a) spectral processing occurs
at a rate determined by the frame analysis rate,
so we run it a k-rate and process frames as they
become available; (b) a framecount, a member
variable of the FPlugin base class, is kept for
this. (c) The AuxMem is used to manage a heap-
allocated block of memory to keep bin ampli-
tudes; and (d) we add the types as a static con-
stant member of the class, which simplifies the
plugin registration call.
The basic algorithm is as follows:

1. get the amplitudes from each bin;

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 138

2. find the nth loudest;

3. use this as a threshold to filter the frame
date, keeping only the bin holding ampli-
tudes above it.

#include <plugin.h>
#include <algorithm >

struct PVTrace : csnd::FPlugin <1, 2> {
csnd::AuxMem <float > amps;
static constexpr
char const *otypes = "f";

static constexpr
char const *itypes = "fk";

int init() {
if(inargs.fsig_data (0). isSliding ())
return csound ->init_error(

Str("sliding not supported"));

if(inargs.fsig_data (0). fsig_format ()
!=csnd:: fsig_format ::pvs &&
inargs.fsig_data (0). fsig_format ()
!=csnd:: fsig_format ::polar)
return csound ->init_error(
Str("fsig format not supported"));

amps.allocate(csound ,
inargs.fsig_data (0). nbins ());

csnd::Fsig &fout =
outargs.fsig_data (0);

fout.init(csound ,
inargs.fsig_data (0));

framecount = 0;
return OK;

}

int kperf() {
csnd:: pv_frame &fin =
inargs.fsig_data (0);

csnd:: pv_frame &fout =
outargs.fsig_data (0);

if(framecount < fin.count ()) {
int n = fin.len() - (int)inargs [1];
float thrsh;

std:: transform(fin.begin(),fin.end(),
amps.begin(), [](csnd:: pv_bin f){
return f.amp (); });

std:: nth_element(amps.begin(),
amps.begin ()+n, amps.end ());

thrsh = amps[n];

std:: transform(fin.begin(), fin.end(),
fout.begin(),
[thrsh](csnd:: pv_bin f){
return f.amp() >= thrsh ?

f : csnd:: pv_bin (); });

framecount = fout.count(fin.count ());
}

return OK;
}

};

#include <modload.h>
void csnd:: on_load(Csound *csound) {
csnd::plugin <PVTrace >(csound ,

"pvstrace", csnd:: thread ::ik);
}

The standard library algorithms are very well
suited to implementing these steps. The code
becomes very compact and fairly readable.

5.5 Array variables

Csound has a container type, array, which can
be used to create vectors of built in types.
CPOF provides a template class Vector<T>
to wrap array arguments conveniently for ma-
nipulation. The typedef myflt vector is an
instantiation of this template for real values
(MYFLT). The following example combines the
use of lambdas and templates to create a whole
family of binary (two-operand) operators for nu-
meric (scalar) arrays. It can be used for init and
k-rate opcodes. The processing is placed on a
separate function to avoid code duplication. It
is just a matter of mapping the inputs into the
outputs through the application of a given func-
tion.

template <MYFLT (*bop)(MYFLT , MYFLT)>
struct ArrayOp2 : csnd::Plugin <1, 2> {

int process(csnd:: myfltvec &out ,
csnd:: myfltvec &in1 ,
csnd:: myfltvec &in2) {

std:: transform(in1.begin(), in1.end(),
in2.begin(), out.begin(),
[](MYFLT f1 , MYFLT f2) {
return bop(f1, f2); });

return OK;
}

int init() {
csnd:: myfltvec &out =
outargs.myfltvec_data (0);

csnd:: myfltvec &in1 =
inargs.myfltvec_data (0);

csnd:: myfltvec &in2 =
inargs.myfltvec_data (1);

if (in2.len() < in1.len ())
return csound ->init_error(
Str("second input array"

" is too short\n"));

out.init(csound , in1.len ());
return process(out , in1 , in2);

}

int kperf() {
return

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 139

process(outargs.myfltvec_data (0),
inargs.myfltvec_data (0),
inargs.myfltvec_data (1));

}
};

This class template then is instantiated to
create various opcodes based on different two-
operand functions:

csnd::plugin <ArrayOp2 <std::atan2 >>
(csound , "taninv",
"i[]", "i[]i[]", csnd:: thread ::i);

csnd::plugin <ArrayOp2 <std::atan2 >>
(csound , "taninv",
"k[]", "k[]k[]", csnd:: thread ::ik);

csnd::plugin <ArrayOp2 <std::pow >>
(csound , "pow",
"i[]", "i[]i[]", csnd:: thread ::i);

csnd::plugin <ArrayOp2 <std::pow >>
(csound , "pow",
"k[]", "k[]k[]", csnd:: thread ::ik);

csnd::plugin <ArrayOp2 <std::hypot >>
(csound , "hypot",
"i[]", "i[]i[]", csnd:: thread ::i);

csnd::plugin <ArrayOp2 <std::hypot >>
(csound , "hypot",
"k[]", "k[]k[]", csnd:: thread ::ik);

csnd::plugin <ArrayOp2 <std::fmod >>
(csound , "fmod",
"i[]", "i[]i[]", csnd:: thread ::i);

csnd::plugin <ArrayOp2 <std::fmod >>
(csound , "fmod",
"k[]", "k[]k[]", csnd:: thread ::ik);

csnd::plugin <ArrayOp2 <std::fmax >>
(csound , "fmax",
"i[]", "i[]i[]", csnd:: thread ::i);

csnd::plugin <ArrayOp2 <std::fmax >>
(csound , "fmax",
"k[]", "k[]k[]", csnd:: thread ::ik);

csnd::plugin <ArrayOp2 <std::fmin >>
(csound , "fmin",
"i[]", "i[]i[]", csnd:: thread ::i);

csnd::plugin <ArrayOp2 <std::fmin >>
(csound , "fmin",
"k[]", "k[]k[]", csnd:: thread ::ik);

This is a good example of how we can apply
modern a C++ idiom to create compact code
for the generation of a family of related opcodes.

6 Conclusions

Perhaps one of the conclusions of this paper is
that C++ is not such a terrible choice for the
implementation of computer music instruments.
While C is still the preeminent language for au-
dio signal processing, the latest C++ standards
have made that language somewhat more inter-
esting, providing almost a blend of high-level
scripting with a (hopefully) efficient implemen-
tation.

References

ISO/IEC. 2011. ISO international standard
ISO/IEC 4882:2011, programming language
C++.

ISO/IEC. 2014. ISO international standard
ISO/IEC 14882:2014, programming language
C++.

ISO/IEC. 2017. Working draft, standard for
programming language C++.

V. Lazzarini, J. ffitch, S. Yi, J. Heintz, Ø.
Brandtsegg, and I. McCurdy. 2016. Csound:
A Sound and Music Computing System.
Springer Verlag.

V. Lazzarini. 2000. The SndObj sound object
library. Organised Sound, (5):35–49.

V. Lazzarini. 2013. The development of com-
puter music programming systems. Journal
of New Music Research, (42):97–110.

V. Lazzarini. 2017a. Computer Music Instru-
ments. Springer Verlag.

V. Lazzarini. 2017b. The csound plugin op-
code framework. In SMC 2017 (under re-
view), Helsinki.

V. Lazzarini. 2017c. The design of a
lightweight dsp programming language. In
SMC 2017 (under review), Helsinki.

Y. Orlarey, D. Fober, and S. Letz. 2004. Syn-
tactical and semantical aspects of faust. Soft
Computing, 8(9):623?632.

T. Wishart. 1996. Audible Design. Orpheus
The Pantomine.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 140

Meet the Cat: Pd-L2Ork and its
New Cross-Platform Version “Purr Data”

Ivica Ico Bukvic
Virginia Tech SOPA ICAT

DISIS L2Ork
Blacksburg, VA, USA 24061

ico@vt.edu

Albert Gräf
Johannes Gutenberg
University (JGU)

IKM, Music-Informatics
Mainz, Germany

aggraef@gmail.com

Jonathan Wilkes
jon.w.wilkes@gmail.com

Abstract

The paper reports on the latest developments of Pd-
L2Ork, a fork of Pd-extended created by Ico Bukvic
in 2010 for the Linux Laptop Orchestra (L2Ork).
Pd-L2Ork offers many usability improvements and
a growing set of objects designed to lower the learn-
ing curve and facilitate rapid prototyping. Started
in 2015 by Jonathan Wilkes, Purr Data is a cross-
platform port of Pd-L2Ork which has recently been
released as Pd-L2Ork version 2. It features a com-
plete GUI rewrite and Mac/Windows support, lever-
aging JavaScript and Node-Webkit as a replacement
for Pd’s aging Tcl/Tk-based GUI component.

Keywords

Pd-L2Ork, Purr Data, fork, usability, L2Ork

1 Introduction

Pure Data, also known as Pd, [15] is arguably
one of the most widespread audio and multime-
dia dataflow programming languages. Pd’s his-
tory is deeply intertwined with that of its com-
mercial counterpart, Cycling 74’s Max [16]. A
particular strength shared by the two platforms
is in their modularized approach that empowers
third party developers to extend the function-
ality without having to deal with the under-
lying engine. Perhaps the most profound im-
pact of Pd is in its completely free and open
source model that has enabled it to thrive in
a number of environments inaccessible to its
commercial counterpart. Examples include cus-
tom in-house solutions for entertainment soft-
ware (e.g. EaPd [10]), Unity3D [18] and smart-
phone integration via libPD [1], an embeddable
library (e.g. RjDj [11], PdDroidParty [12], and
Mobmuplat [9]), and other embedded platforms,
such as Raspberry Pi [4].
Pd’s author Miller Puckette has spearheaded

a steady development pace with the primary
motivation being iterative improvement while
preserving backwards compatibility. Puckette’s
work on Pd continues to be instrumental in

fostering creativity and curiosity across genera-
tions, and as the library of works relying on Pd
grows, so does the importance of conservation
and ensuring that Pd continues to support even
the oldest of patches. However, the inevitable
side-effect of the increasingly conservationist fo-
cus of the core Pd is that any new addition has
to be carefully thought out in order to account
for all the idiosyncrasies of past versions and en-
sure there is a minimal chance of a regression.
This vastly limits the development pace.

As a result, the Pd community sought to com-
plement Pure Data’s compelling core function-
ality with a level of polish that would lower the
initial learning curve and improve user experi-
ence. In 2002 the community introduced the
earliest builds of Pd-extended [13], the longest
running Pd variant. There were other ambi-
tious attempts, like pd-devel, Nova, and Desire-
Data [14], and in recent years Pd has seen a
resurgence in forks that aim to sidestep usabil-
ity issues through alternative approaches, in-
cluding embeddable solutions (e.g. libPd) and
custom front ends. Pd-extended was probably
the most popular alternative Pd version which
continues to be used by many, even though it
was abandoned in 2013 by its maintainer Hans-
Christoph Steiner due to lack of contributors to
the project.

Pd-L2Ork presents itself as a viable alterna-
tive which started out as a fork of Pd-extended
and continues to be actively maintained. We be-
gin with a discussion of Pd-L2Ork’s history, mo-
tivation and implementation. We then look at
Pd-L2Ork’s most recent off-spring nick-named
“Purr Data”, which has recently been released
as Pd-L2Ork version 2, runs on Linux, Mac
and Windows, and offers some unique new fea-
tures, most notably a completely new and im-
proved GUI component. The paper concludes
with some remarks on availability and avenues
for future developments.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 141

2 History and Motivation

Introduced in 2009 by Bukvic, Pd-L2Ork [2]
started as a Pd-extended 0.42.5 variant. The
focus was on nimble development designed to
cater to the specific needs of the Linux Lap-
top Orchestra (L2Ork), even if that meant sub-
optimal initial implementations that would be
ironed out over time as the understanding of the
overall code base improved and the target pur-
pose was better understood through practice.
An important part of L2Ork’s mission was

educational outreach. Consequently, a major-
ity of early additions to Pd-extended focused
on usability improvements, including graphical
user interface and editor functions. While some
of these were incorporated upstream, a growing
number of rejected patches began to build an
increasing divide between the two code bases.
As a result in 2010 Bukvic introduced a sepa-
rately maintained Pd-extended variant, named
Pd-L2Ork after L2Ork for which it was origi-
nally designed.
Over time, as the project grew in its scope

and visibility, it attracted new users, and even-
tually a team of co-developers, maintainers and
contributors formed around it. This is obvi-
ously important for the long-term viability of
the project, so that it doesn’t fall victim to Pd-
extended’s fate, and thus the development team
continues to invite all kinds of contributions.
Pd-L2Ork’s philosophy grew out of its ini-

tial goals and the early development efforts. It
is defined by a nimble development process al-
lowing both major and iterative code changes
for the sake of improving usability and stabil-
ity as quickly as possible. Another important
aspect of this philosophy is releasing improve-
ments early and often in order to have work-
ing iterations in the hands of dozens of students
of varying educational backgrounds and experi-
ence, which ensured quick vetting of the ensuing
solutions.
Despite an ostensibly lax outlook on back-

wards compatibility, to date Pd-L2Ork and
Purr Data remain compatible with Pd (the
-legacy flag can be used to disable some of the
more disruptive changes). In particular, there
haven’t been any changes in the patch file for-
mat, so patches created in Pd still work without
any ado in Pd-L2Ork and vice versa (assuming
that they don’t use any externals which aren’t
available in the target environment). Also, com-
munication between GUI and engine still hap-
pens through sockets, so that the two can run

in separate processes (running the engine with
real-time priorities).

Like Pd-extended, Pd-L2Ork provides a sin-
gle turnkey monolithic solution with all the li-
braries included in one package. This minimizes
overhead in configuring the programming envi-
ronment and installing supplemental libraries,
and addresses the potential for binary incom-
patibility with Pd.

3 Implementation

Pd-L2Ork’s code base increasingly diverges
from Pd. It consists of many bug-fixes, addi-
tions and improvements, which can be split into
engine, usability, documentation, new and im-
proved objects and libraries, scaffolded learning
and rapid prototyping. In this section we high-
light some of the most important user-visible
changes and additions, more details can be
found in the authors’ PdCon paper [3].

3.1 Engine

Internal engine contributions have largely fo-
cused on implementing features and bug-fixes
requested by past and existing Pd users. Some
of these include patches that have never made it
to the core Pd, such as the cord inspector (a.k.a.
magic glass), improved data type handling logic,
and support for outlier cases that may otherwise
result in crashes and unexpected behavior. Ad-
ditional checks were implemented for the Jack
[6] audio backend to avoid hangs in case Jack
freezes. Default sample rate settings are pro-
vided for situations where Pd-L2Ork may run
headless (without GUI), thus removing the need
for potentially unwieldy headless startup proce-
dures. The $0 placeholder in messages now au-
tomatically resolves to the patch instance, while
the $@ argument can be used to pass the entire
argument set inside a sub-patch or an abstrac-
tion.1 [trigger]2 logic has been expanded to
allow for static allocation of values, which alle-
viates the need for creating bang triggers that
are fed into a message with a static value.

Visual improvements: The Tk-based [19]
graphical engine has been replaced with TkPath
[17] which offers an SVG-enabled antialiased

1In Pd parlance, an abstraction is a Pd patch encap-
sulating some functionality to be used as a subpatch in
other patches.

2Here and in the following we employ the usual con-
vention to indicate Pd objects by enclosing them in
brackets.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 142

canvas.3 A lot of effort went into streamlining
“graph-on-parent” (Pd’s facility to draw GUI
elements in a subpatch on its parent), includ-
ing proper bounding box calculation and detec-
tion, optimizing redraw, and resolving drawing
issues with embedded graph-on-parent patches.
Improvements also focused on sidestepping the
limitations of the socket-based communication
between the GUI and the engine, such as key-
board autorepeat detection. As a result, the
[key] object can be instantiated with an op-
tional argument that enables autorepeat filter-
ing, while retaining backward compatibility.

Stacking order: Another substantial core
engine overhaul pertains to consistent ordering
of objects in the glist (a.k.a. canvas) stack. This
has helped ensure that objects always honor the
visual stacking order, even after undo and redo
actions, and has paved the way towards more
advanced functionality including advanced edit-
ing techniques and a system-wide preset engine.

Presets: The preset engine consists of two
new objects [preset hub] and [preset node].
Nodes can be connected to various objects, in-
cluding arrays, and can broadcast the current
state to their designated hub for storing and re-
trieval. Multiple hubs can be used with vary-
ing contexts. The ensuing system is univer-
sal, efficient, unaffected by editing actions, and
abstraction- and instance-agnostic (e.g., using
multiple instances of the same abstraction is
automatically supported). It supports anything
from recording individual states to real-time au-
tomation of multiple parameters through peri-
odic snapshots.

Data structures: Data structures are an ad-
vanced feature of Pd to produce visualizations
of data collections such as interactive graphical
scores. Pd-L2Ork enhances these with the addi-
tion of sprites and new ways to manipulate the
data.

3.2 Usability

On the surface Pd-L2Ork builds on Pd-
extended’s appearance improvements. Under
the hood, with the canvas being drawn as a
collection of SVG shapes, the entire ecosys-
tem lends itself to a number of new opportuni-
ties. The most obvious involve antialiased dis-
play, advanced shapes (e.g. Bézier curves that
are also used for drawing patch cords), support

3SVG = Scalable Vector Graphics, a widely used vec-
tor image format standardized by the W3C.

Figure 1: Pd-L2Ork running on Linux.

for image formats with alpha channel, and ad-
vanced data structure drawing and manipula-
tion using SVG-centric enhancements (Fig. 1).
A majority of usability improvements focus

on the editor. The consistent stacking order im-
plemented in the engine has served as a foun-
dation for the infinite undo, as well as to-front
and -back stacking options that are accessible
via the right-click context menu. Lots of im-
provements and polishing went into the iemgui
objects, such as improved positioning, enhanced
properties dialogs and graph-on-parent behav-
ior.
The old autotips patch was integrated (and

improved upon). The tidy up feature has been
redesigned to offer a two-step realignment of ob-
jects. (The first key press aligns the objects on
a single axis, while the second respaces them, so
that they are equidistant from each other.) In-
telligent patching was implemented to provide
four variants of automatically generating mul-
tiple patch cords based on user’s selection, and
to provide additional ways of creating multiple
connections (e.g. SHIFT + mouse click). The
canvas scrolling logic has been overhauled to
minimize the use of scrollbars, provide minimal
visual footprint, and ensure most of the patch
is always visible.
Pd-L2Ork supports drag and drop and has

support for pasting Pd code snippets (using Pd’s
“FUDI” format) directly onto the canvas. The
copy and paste engine has been overhauled to
improve buffer sharing across multiple applica-
tion instances. The entire graphics engine is
themeable and its settings are by default saved
with the rest of the configuration files.

3.3 Object Libraries

Apart from the core Pd objects and improve-
ments described in the Engine section above,
Pd-L2Ork offers a growing number of revamped

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 143

objects while also pruning redundant and un-
necessary objects.
Special attention was given to supporting

the Raspberry Pi (RPi) platform with a cus-
tom set of objects designed specifically to har-
ness the full potential of the RPi GPIO and
I2C interfaces, including [disis gpio] and
[disis spi] [4]. The cyclone library has re-
ceived new documentation and a growing num-
ber of bugfixes and improvements. Ggee li-
brary’s [image] has received a significant over-
haul and became the catchall solution for image
manipulation. In addition to the standard Pd-
extended libraries, Pd-L2Ork has reintroduced
[disis munger~] and an upgraded version of
the [fluid~] soundfont synth external which
depend on the flext library. Other libraries in-
clude fftease, lyonpotpourri, and RTcmix˜. Pd-
L2Ork bundles advanced networking externals
[disis netsend] and [disis receive], con-
venience externals like [patch name], and ab-
stractions (e.g., those of the K12 learning mod-
ule [5], and a growing number of L2Ork-specific
abstractions designed to foster rapid prototyp-
ing). A few libraries have been removed due
to lack of support and/or GUI object imple-
mentations that utilize hardwired Tcl-specific
workarounds.

3.4 Introspection

Most interpreted languages have mechanisms to
do introspection. Pd-L2Ork features a collec-
tion of “info” classes for retrieving the state
of the program on a number of levels, from
the running Pd instance to individual objects
within patches. Four classes provide the basic
functionality:

• [pdinfo] reflects the state of the running
Pd instance, including dsp state, avail-
able/connected audio and midi devices,
platform, executable directory, etc.

• [canvasinfo] is a symbolic receiver for the
canvas, abstraction arguments, patch file-
name, list of current objects, etc. The ob-
ject takes a numeric argument to query the
state of parent or ancestor canvases.

• [classinfo] offers information about the
currently loaded classes in the running in-
stance. This includes creator argument
types, as well as the various methods.

• [objectinfo] returns bounding box, class
type, and size for a particular object on the
canvas.

While the introspection provided by these
classes is relatively rudimentary, it alleviates the
need for a large number of external libraries that
add missing core functionality. For example,
Pd-L2Ork ships with several compiled externals
whose purpose is to fetch the list of abstrac-
tion arguments. These externals all have dif-
ferent interfaces and are spread across various
libraries. Having one standard built-in interface
for fetching arguments that behaves similarly to
other introspection interfaces improves the us-
ability of the system. Furthermore, opening up
rudimentary introspection to the user increases
the composability of Pd. Functionality that pre-
viously only existed inside the C code can now
be implemented as an abstraction (i.e., in Pd
itself). These don’t require compilation and are
more accessible to a wider number of users to
test and improve them.

4 Purr Data a.k.a. “The Cat”

Despite all of the improvements it brings to
the table, Pd-L2Ork still employs the same old
Tcl/Tk environment to implement its graphi-
cal user interface. This is both good and bad.
The major advantage is compatibility with the
original Pd. On the other hand, Tcl/Tk looks
and feels quite dated as a GUI toolkit in this
day and age. Tcl is a rather basic program-
ming language and its libraries have been falling
behind, making it hard to integrate the latest
GUI, multimedia and web technologies. Last
but not least, Pd-L2Ork’s adoption was severely
hampered by the fact that it relies on some
lesser-used Tcl/Tk extensions (specifically, Tk-
Path and the Tcl Xapian bindings) which are
not well-supported on current Mac and Win-
dows systems, and thus would have required
substantial porting effort to make Pd-L2Ork
work there.
Purr Data was created in 2015 by Wilkes to

address these problems.4 The basic idea was
to replace the aging Tcl/Tk GUI engine with
a modern, open-source, well-supported cross-
platform framework supporting programmabil-
ity and the required advanced 2D graphical ca-
pabilities, without being tied into a particular
GUI toolkit again.

4Readers may wonder about the nick-name of this
Pd-L2Ork offspring, to which the author in his origi-
nal announcement at http://forum.pdpatchrepo.info
only offered the explanation, “because cats.” Quite obvi-
ously the name is a play on “Pure Data” on which “Purr
Data” is ultimately based, but it also raises positive con-
notations of soothing purring sounds.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 144

http://forum.pdpatchrepo.info

Employing modern web technologies seemed
an obvious choice to achieve those goals, as they
are well-supported, cross-platform and toolkit-
agnostic, programmable (via JavaScript), and
offer an extensive programming library and
built-in SVG support (as a substitute for Pd-
L2Ork’s use of TkPath which incidentally fol-
lows the SVG graphics model).
There are basically two main alternatives

in this realm, nw.js5 a.k.a. “node-webkit” and
Electron6. These both essentially offer a stand-
alone web browser engine combined with a
JavaScript runtime. nw.js was chosen because it
offers some technical advantages deemed impor-
tant for Purr Data (in particular, an easier in-
terface to create multi-window applications and
better support for legacy Windows systems).

So, in a nutshell, Purr Data is Pd-L2Ork with
the Tcl/Tk GUI part ripped out and replaced
with nw.js. Purr Data’s GUI is written en-
tirely in JavaScript, which is a much more ad-
vanced programming language than Tcl with an
abundance of libraries and support materials.
Patches are implemented as SVG documents
which are generally much more responsive and
offer better graphical capabilities than Tk win-
dows. They can also be zoomed to 16 different
levels and themed using CSS, improving usabil-
ity. The contents of a patch window is drawn
and manipulated using the HTML5 API. Thus
the code to display Pd patches is very portable
and will work in any modern GUI toolkit that
has a webview widget.
There are also some disadvantages with this

approach. First, Tcl code in Pd’s core and in
the externals needs to be ported to JavaScript
to make it work with the new GUI; we’ll touch
on this in the following subsection.
Second, the size of the binary packages

is much larger than with Pd-L2Ork or Pd-
extended since, in order to make the packages
self-contained, they also include the full nw.js
binary distribution. This is a valid complaint
about many of the so-called “portable desktop
applications” being offered these days, but in
the case of Purr Data it is mitigated by the fact
that plain Pd-L2Ork is not exactly a slim pack-
age either.
Third, the browser engine has a much higher

memory footprint than Tcl/Tk which might be
an issue on embedded platforms with very tight
memory constraints.

5https://nwjs.io/
6https://electron.atom.io/

So far, none of these issues has turned out to
be a major road-block in practice. The most
serious issue we’re facing right now probably is
that externals using Pd’s Tcl/Tk facilities need
to have their GUI code rewritten to make it
work with Purr Data; this is a substantial un-
dertaking and thus hasn’t been done for all bun-
dled externals yet.

4.1 Implementation

Using JavaScript in lieu of Tcl as the GUI pro-
gramming language poses some challenges. Tcl
commands with Tk window strings are hard-
coded into the C source files of Pd. This means
that any port to a different toolkit must ei-
ther replace those commands with an abstract
interface, or write middleware that turns the
hard-coded Tcl strings into abstract commands.
Given the complexity of Tcl commands in both
the core and external libraries, that middleware
would essentially have to re-implement a large
part of the Tcl interpreter.

Consequently, Purr Data opted for the former
approach of directly implementing an abstract
interface. This takes the form of a JavaScript
API providing the necessary GUI tie-ins to the
engine and externals, which is called from the C
side using a new set of functions (gui vmess et
al) which replace the corresponding functions
of Pd’s C API (sys vgui etc.). As already
mentioned, this means that externals which use
these facilities need to have their GUI code
rewritten to make it work with the new GUI.
(Affected externals will work, albeit without
their GUI features.)

Adding to the porting difficulty is the fact
that Pd has no formal specification, and its GUI
interface follows no common design pattern for
2D graphics. For example, the graph-on-parent
window appears at a glance as a viewport that
clips to a specified bounding box. However, the
bounding box itself behaves inconsistently–for
built-in widgets like [hslider] or [bng] it clips
(per widget, not per pixel), but for graphed ar-
rays, data structure visualizations, and widget
labels it does no clipping at all.

To get to grips with these problems, Purr
Data’s JavaScript GUI implementation draws
and manipulates Pd patch windows using the
HTML5 API, which is widely documented and
used. The Pd canvas itself is implemented as an
SVG document. SVG was chosen because it is a
mature, widely-used 2D API. Also, larger can-
vas sizes have little to no performance impact

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 145

https://nwjs.io/
https://electron.atom.io/

on the responsiveness of the graphics. Since Pd
patches can be large, this makes SVG a better
choice for drawing a Pd canvas than the stan-
dard HTML5 canvas.

4.2 Leveraging HTML5 and SVG to

Improve Pd Data Structures

Purr Data employs a small subset of the SVG
specification to implement quite substantial im-
provements to data structure visualization. In-
heriting from a pre-existing standards-based 2D
API has several advantages over an ad-hoc ap-
proach. First, if implemented consistently, the
existing SVG documentation can be used to test
and teach the system. Second, it is not neces-
sary to immediately understand all the design
choices of the entire specification in order to im-
plement parts of it. Since those parts have been
used and tested in a variety of mature applica-
tions, it makes it easier to avoid mistakes that
often riddle designs made by developers who
aren’t graphics experts. Finally, there is less
risk of a standards-based API becoming aban-
doned than a more esoteric API.
To improve data structure visualizations, sev-

eral [draw] commands were added to support
the basic shape/object types in SVG. The cur-
rently supported types are circle, ellipse,
rect, line, polyline, polygon, path, image,
and g.7 Each has a number of methods
which map directly to SVG graphical attributes.
Methods were also added for Document Object
Model (DOM) events to trigger notifications to
the outlet of each object.
The screenshot in Fig. 2 shows the “SVG

tiger” drawn from a few hundred paths found
inside the [draw g] object. Even though
the drawing is complex, Purr Data caches the
bounding box for the tiger object to prevent
the hit-testing from causing dropouts. One can
mouse over the tiger and trigger real-time audio
synthesis.
It is also possible to set parameters for most

of the [draw] attributes. For instance, the mes-
sage opacity z can be sent to set a shape’s
opacity to be whatever the value of the field
z happens to be for a particular instance of
the data structure. As soon as the value of
z changes, Pd then automatically updates the
opacity of the corresponding shape accordingly.

7The latter g element denotes a “group”, which is
implemented as a special kind of subpatch that allows
the attributes of several [draw] commands to be changed
simultaneously.

Figure 2: Interactive SVG data structure.

4.3 Custom GUI Elements

As the SVG tiger example shows, Purr Data
makes it possible to bind HTML5 DOM events
to SVG shapes. Reporting the events is not en-
abled by default, but can be switched on by sim-
ply sending the appropriate Pd message to the
[draw] object, such as the mouseover 1 mes-
sage in Fig. 2. Each [draw] object has an out-
let which then emits messages when events like
mouse-over, movements and clicks are detected.
It goes without saying that this considerably

expands Pd’s capabilities to deal with user in-
teractions, e.g., if the user wants to modify ele-
ments of a graphical score in real-time. But it
also paves the way for enabling users to design
any kind of GUI element in plain Pd, without
having to learn a “real” programming language
and its frameworks.
For instance, Fig. 3 shows a collection of three

knobs drawn using the new SVG [draw] com-
mands, whose values (represented by the r field
in the nub data structure, which is linked to the
rotation angles of the knobs) can be manipu-
lated by dragging the mouse up or down. The
values can then be read from the data struc-
ture using Pd’s built-in [get] object and used
for whatever purpose, just like with any of the
built-in GUI elements.
Pd offers a rather limited collection of built-in

GUI elements to be used in patches, and extend-
ing that collection needs a developer proficient
in both C and Tcl/Tk. Purr Data’s new SVG
visualizations totally change the game, because
any Pd user can do them without specialized
programming knowledge. We thus expect the

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 146

Figure 3: Custom GUI elements.

facilities sketched out above to be used a lot
by Pd users who want to enrich their patches
with new kinds of GUI elements. As soon as it
becomes possible to conveniently package such
custom GUI elements as graph-on-parent ab-
stractions, we hope to see the proliferation of
GUI element libraries which can then be used by
Pd users and modified for their own purposes.

5 Getting Pd-L2Ork

The sources of Pd-L2Ork and Purr Data are
currently being maintained in two separate git
repositories.8 There are plans to merge the two
repositories again at some point, so that both
versions will become two branches in the same
repository, but this has not happened yet.

For Purr Data there is also Github mir-
ror available at https://agraef.github.io/
purr-data/. This is mainly used as a one-stop
shop to make it easy for users to get their hands
on the latest source and the available releases,
including pre-built packages for Linux, macOS
and Windows.
Because of Pd-L2Ork’s addons and its com-

prehensive set of bundled externals, the soft-
ware has a lot of dependencies and a fairly com-
plicated (and time-consuming) build process.
So, while the software can be built straight from
the source, it is usually much easier to use one
of the available binary packages:

• Virginia Tech’s official Pd-L2Ork packages
are available at http://l2ork.music.
vt.edu/main/make-your-own-l2ork/
software/.

8cf. https://github.com/pd-l2ork/pd and https:
//git.purrdata.net/jwilkes/purr-data

• Jonathan Wilkes’ Purr Data packages
can be found at https://github.com/
agraef/purr-data/releases.

• JGU also offers Pd-L2Ork and Purr Data
packages for Ubuntu and Arch Linux.
Web links and installation instructions
can be found at http://l2orkubuntu.
bitbucket.org/ and http://l2orkaur.
bitbucket.org/, respectively.

The JGU packages can be installed alongside
each other, so that you can run both “classic”
Pd-L2Ork and Purr Data on the same system.
(This may be useful, e.g., if you plan to use Pd-
L2Ork’s K12 mode which has not been ported
to Purr Data yet.) We mention in passing that
JGU’s binary package repositories also contain
Pd-L2Ork and Purr Data versions of the Faust
and Pure extensions which further enhance Pd’s
programming capabilities.9

6 Future Work

After Purr Data’s initial release as Pd-L2Ork
2.0 in February 2017, “classic” Pd-L2Ork has
become version 1.0 and went into maintenance
mode. While development will continue on the
Purr Data branch, we will keep the original Pd-
L2Ork available until all of Pd-L2Ork’s features
have been ported or have suitable replacements
in Purr Data.
Purr Data has matured a lot in the past few

months, but like any project of substantial size
and complexity it still has a few bugs and rough
edges we want to address after the initial re-
lease, in particular:

• Port the remaining missing features from
Pd-L2Ork (autotips and K12 mode).

• Port legacy Tcl code that is still present in
the GUI features of some of the 3rd party
externals.

• Some code reorganization is in order, along
with a complete overhaul of the current
build system.

One interesting direction for future research
is leveraging the new SVG visualizations as a
means to create custom GUI elements in plain
Pd, i.e., as ordinary Pd abstractions. This will
make it much easier for users to create their

9Grame’s Faust and JGU’s Pure are two functional
programming languages geared towards signal processing
and multimedia applications [7, 8].

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 147

https://agraef.github.io/purr-data/
https://agraef.github.io/purr-data/
http://l2ork.music.vt.edu/main/make-your-own-l2ork/software/
http://l2ork.music.vt.edu/main/make-your-own-l2ork/software/
http://l2ork.music.vt.edu/main/make-your-own-l2ork/software/
https://github.com/pd-l2ork/pd
https://git.purrdata.net/jwilkes/purr-data
https://git.purrdata.net/jwilkes/purr-data
https://github.com/agraef/purr-data/releases
https://github.com/agraef/purr-data/releases
http://l2orkubuntu.bitbucket.org/
http://l2orkubuntu.bitbucket.org/
http://l2orkaur.bitbucket.org/
http://l2orkaur.bitbucket.org/

own GUI elements, and will hopefully encourage
community contributions resulting in libraries
of custom GUI objects ready to be used and
modified by Purr Data users.
With the expansion onto other platforms, Pd-

L2Ork’s key challenge is ensuring sustainable
growth. As with any other open-source project
of its size and scope, this can only be achieved
through fostering greater community participa-
tion in its development and maintenance, so
please do not hesitate to contact us if you would
like to help!

7 Acknowledgements

The authors would like to thank the original
Pd author Miller Puckette, numerous commu-
nity members who have complemented the Pd
ecosystem with their own creativity and con-
tributions, including Hans Christoph Steiner
and Mathieu Bouchard. We would also like
to thank the L2Ork sponsors and stakeholders
without whose support Pd-L2Ork would have
never been possible nor sustainable.

References

[1] P. Brinkmann, P. Kirn, R. Lawler, C. Mc-
Cormick, M. Roth, and H.-C. Steiner. Em-
bedding pure data with libpd. In Proceed-
ings of the Pure Data Convention, volume
291. Citeseer, 2011.

[2] I. Bukvic, T. Martin, E. Standley, and
M. Matthews. Introducing L2ork: Linux
Laptop Orchestra. In Interfaces, pages
170–173, 2010.

[3] I. Bukvic, J. Wilkes, and A. Gräf.
Latest developments with Pd-L2Ork
and its development branch Purr-Data.
PdCon 2016, New York, NY, USA.
http://ico.bukvic.net/PDF/PdCon16_
paper_84.pdf, 2016.

[4] I. I. Bukvic. Pd-L2ork Raspberry Pi
Toolkit as a Comprehensive Arduino Alter-
native in K-12 and Production Scenarios.
In NIME, pages 163–166, 2014.

[5] I. I. Bukvic, L. Baum, B. Layman, and
K. Woodard. Granular Learning Objects
for Instrument Design and Collaborative
Performance in K-12 Education. In New
Interfaces for Music Expression, pages
344–346, Ann Arbor, Michigan, 2012.

[6] P. Davis and T. Hohn. Jack audio connec-
tion kit. In Proc. Linux Audio Conference,
LAC, volume 3, pages 245–256, 2003.

[7] A. Gräf. Signal Processing in the Pure Pro-
gramming Language. In Proceedings of the
7th International Linux Audio Conference,
pages 137–144, Parma, 2009. Casa della
Musica.

[8] A. Gräf. Pd-Faust: An integrated environ-
ment for running Faust objects in Pd. In
Proceedings of the 10th International Linux
Audio Conference, pages 101–109, Stanford
University, California, US, 2012. CCRMA.

[9] D. Iglesia. MobMuPlat (iOS application).
Iglesia Intermedia, 2013.

[10] K. Jolly. Usage of pd in spore and dark-
spore. In PureData Convention, 2011.

[11] J. Kincaid. RjDj Generates An Awe-
some, Trippy Soundtrack For Your Life.
http://social.techcrunch.com/2008/
10/13/rjdj-generates.

[12] C. McCormick, K. Muddu, and
A. Rousseau. PdDroidParty-Pure Data
patches on Android devices. Retrieved
January, 21, 2014.

[13] [PD-announce] MacOSX installers for pd
0.36 and pd 0.36 extended (CVS).

[14] pd forks WAS : Keyboard shortcuts
for ”nudge”, ”done editing”. http:
//permalink.gmane.org/gmane.comp.
multimedia.puredata.general/79646.

[15] M. Puckette. Pure Data: another inte-
grated computer music environment. In
Proceedings, International Computer Mu-
sic Conference, pages 37–41, 1996.

[16] M. Puckette. Max at seventeen. Computer
Music Journal, 26(4):31–43, 2002.

[17] TkPath. http://tclbitprint.
sourceforge.net/.

[18] Unity - Game Engine. https://unity3d.
com.

[19] B. B. Welch. Practical programming in Tcl
and Tk, volume 3. Prentice Hall Upper
Saddle River, 1995.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 148

http://ico.bukvic.net/PDF/PdCon16_paper_84.pdf
http://ico.bukvic.net/PDF/PdCon16_paper_84.pdf
http://social.techcrunch.com/2008/10/13/rjdj-generates
http://social.techcrunch.com/2008/10/13/rjdj-generates
http://permalink.gmane.org/gmane.comp.multimedia.puredata.general/79646
http://permalink.gmane.org/gmane.comp.multimedia.puredata.general/79646
http://permalink.gmane.org/gmane.comp.multimedia.puredata.general/79646
http://tclbitprint.sourceforge.net/
http://tclbitprint.sourceforge.net/
https://unity3d.com
https://unity3d.com

Posters/
SpeedGeeking

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 149

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 150

Impulse-Response and CAD-Model-Based
Physical Modeling in Faust

Pierre-Amaury Grumiaux1, Romain Michon2,
Emilio Gallego Arias1, and Pierre Jouvelot1

1MINES ParisTech, PSL Research University, France
2CCRMA, Stanford University, USA

Abstract

We present a set of tools to quickly implement modal
physical models in the Faust programming lan-
guage. Models can easily be generated from any
impulse response or 3D graphical representation of
a physical object.

This system targets users with little knowledge
in physical modeling and willing to use this type of
synthesis technique in a musical context.

Keywords

Physical Modeling Synthesis, Faust Language, Dig-
ital Signal Processing

1 Introduction

The Faust programming language has proven
to be well suited to implement physical mod-
els of musical instruments [Michon and Smith,
2011] using waveguides [Smith, 2010] and modal
synthesis [Adrien, 1991].
In this short paper, we present two Python

scripts1 allowing to easily generate Faust

modal physical models: ir2dsp.py and
mesh2dsp.py.

• ir2dsp.py takes an audio file containing
an impulse response as its main argument
and converts it into a Faust file imple-
menting the corresponding modal physical
model.

• mesh2dsp.py outputs the same type of
model but takes an .stl2 file containing
the specification of any 3D object designed
with a CAD3 program as its main argu-
ment.

Faust programs generated by ir2dsp.py and
mesh2dsp.py are ready to use and can be
compiled to any of the Faust targets (stan-
dalone applications, plug-ins, etc.).

1https://github.com/rmichon/pmFaust/ –
All URLs in this paper were verified on 07/04/2017.

2STereoLithography.
3Computer-Aided Design.

After briefly describing these two tools, we’ll
evaluate them and provide directions for future
works.

2 Faust Modal Physical Model

Any linear percussion instrument can be imple-
mented using a bank of resonant bandpass fil-
ters [Smith, 2010]. Each filter implements one
mode (a sine or cosine function) of the system
and can be configured by providing three pa-
rameters: the frequency of the mode, its gain,
and its resonance duration (T60).
Such a filter can be easily implemented in

Faust using a biquad filter (tf2) and by com-
puting its poles and zeros for a given frequency
(f) and T60 (t60):

modeFilter(f,t60) = tf2(b0,b1,b2,a1,a2)

with{

b0 = 1;

b1 = 0;

b2 = -1;

w = 2*PI*f/SR;

r = pow(0.001,1/float(t60*SR));

a1 = -2*r*cos(w);

a2 = rˆ2;

};

mode(f,t60,gain) =

modeFilter(f,t60)*gain;

The modeFilter function can be easily ap-
plied in parallel in Faust using the par opera-
tor to implement any modal physical model:

model =

_ <:

par(i,nModes,

mode(freq(i),t60(i),gain(i)))

:> _;

The Faust-generated block diagram corre-
sponding to this code, with nModes = 4, freq(i
)= 100*(i+1), and (t60(i),gain(i)) as succes-
sively (0,9,0.9), (0.8,0.9), (0.6,0.5) and (0.5,0.6),
can be visualized in Figure 1.
This type of model can be easily excited by a

filtered noise impulse (see Figure 2). The cut-
off frequency of the lowpass and highpass filters

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 151

mode(100)(0.9f)(0.9f)

mode(200)(0.8f)(0.9f)

mode(300)(0.6f)(0.5f)

mode(400)(0.5f)(0.6f)

process

Figure 1: Block diagram of a Faust modal
physical model.

can be used to excite specific zones of the spec-
trum of the model and to choose the “excitation
position.” Since this system is linear, the same
behavior could be achieved by scaling the gain of
the different modes, but the filter approach that
we use here will better integrate to our modu-
lar physical modeling synthesis toolkit, briefly
presented in §6.

White Noise Lowpass Highpass Envelope To Model

Figure 2: Excitation generator algorithm used
to drive our modal physical models.

3 ir2dsp.py

ir2dsp.py takes an audio file containing an
impulse response as its main argument. After
performing the Fast Fourier Transform (FFT)
on it, modes information is extracted by carry-
ing out peaks detection. The T60 of each mode
is computed by measuring its bandwidth at -3
dB.
Modes information is formatted by

ir2dsp.py to be plugged to a generic
modal Faust physical model similar to the one
described in §2. The output of the Python pro-
gram is a ready-to-use Faust file implementing
the model.
The goal of this tool is not to create very ac-

curate models but rather to be able to strike any
object (e.g., a glass, a metal bar, etc.), record
the resulting sound, and turn it into a playable
digital musical instrument.

4 mesh2dsp.py

The output of mesh2dsp.py is the same as
ir2dsp.py (see §3), but it takes a .stl file as

its input instead of an impulse response. stl is
a common format supported by most CAD pro-
grams to export the description of 3D objects.
After converting the provided .stl file into

a mesh, mesh2dsp.py performs a Finite Ele-
ment Analysis (FEA) using Elmer 4 Various pa-
rameters such as the Young Modulus, the Pois-
son Coefficient, and the density of the material
of the object must be provided to carry out this
task.
The result of the analysis is a set of eigen-

values and mass participations for each mode.
Eigenvalues are then converted to mode fre-
quencies and mass participations to mode gains.
Unfortunately, this technique doesn’t allow to
calculate the T60 of the modes which can be
configured by the user directly from the Faust

program.

5 Evaluation

To evaluate the accuracy of ir2dsp.py, we
recorded the impulse response of a can and gen-
erated its corresponding modal physical model.
Figure 3 shows the spectrogram of the impulse
response of the can and Figure 4 the spectro-
gram of the impulse response of the physical
model generated by ir2dsp.py. ir2dsp.py
was configured to detect peaks at a minimum
value of -20 dB and at least 100 Hz spaced
from each other. We see that the synthesized
sound is pretty close to the recorded version.
T60 s are not perfectly accurate since they were
calculated by measuring the bandwidth of the
mode. Tracking their evolution in the time do-
main would provide better results; thus we plan
to use this technique in the future instead.

Figure 3: Spectrogram of an impulse response
of a can

4https://www.csc.fi/web/elmer/

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 152

Figure 4: Spectrogram of the output of the
modal model generated with ir2dsp.py from
a can IR

mesh2dsp.py was tested with the geometric
3D model of a solid bar and provided good sub-
jective auditory results. More objective analysis
is clearly needed here.

6 Future Work

This work has been carried out as part of a
larger project on designing a physical modeling
toolkit for the Faust programming language.
ir2dsp.py and mesh2dsp.py will be inte-
grated to it.
We plan to improve ir2dsp.py by using a

better T60 measurement algorithm. Indeed,
the T60 of each mode is currently computed
by measuring its bandwidth after taking the
FFT of the entire impulse response. A better
approach would be to extract this information
from a time-frequency representation of the sig-
nal (i.e., spectrogram), which would be more
accurate.
Finally, we would like to try other open-

source packages than Elmer to carry out the
FEA in mesh2dsp.py to get better results and
to smooth its integration in our Faust physical
modeling toolkit.

7 Conclusion

We presented a series of prototype tools allow-
ing to design at a very high level ready-to-use
physical models of musical instruments. Models
can be generated from impulse responses or 3D
graphical representations of physical objects.
While the models generated by this system

are far from being accurate, we believe that it
provides a convenient way for composers and
musicians to design expressive custom instru-
ments usable in a musical context.

8 Acknowledgements

Our thanks go to Yann Orlarey for his help with
the use of Faust.

References

Jean-Marie Adrien. 1991. The missing link:
Modal synthesis. In Representations of Musi-
cal Signals, chapter The Missing Link: Modal
Synthesis, pages 269–298. MIT Press, Cam-
bridge, USA.

Romain Michon and Julius O. Smith. 2011.
Faust-STK: a set of linear and nonlinear
physical models for the Faust programming
language. In Proceedings of the 14th Inter-
national Conference on Digital Audio Effects
(DAFx-11), pages 199–204, Paris, France,
September.

Julius Orion Smith. 2010. Physical Audio
Signal Processing for Virtual Musical Instru-
ments and Digital Audio Effects. W3K Pub-
lishing.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 153

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 154

Fundamental Frequency Estimation for
Non-Interactive Audio-Visual Simulations

Rahul AGNIHOTRI, Romain MICHON and Timothy S. O’BRIEN
CCRMA (Center for Computer Research in Music and Acoustics),

Stanford University,
Stanford, CA, 94305

{ragni, rmichon, tsob}@ccrma.stanford.edu

Abstract

This paper aims to demonstrate the use of funda-
mental frequency estimation as a gateway to create
a non-interactive system where computers communi-
cate with each other using musical notes. Frequency
estimation is carried out using the YIN algorithm,
implemented using the ofxAubio add-on in open-
Frameworks. Since we have used only open-source
technologies for the implementation of this project,
it can be executed on any platform: Linux, Macin-
tosh OS or Windows OS. As a simulation, this sys-
tem is used to depict a conversation between people
at a round-table event and presented as an audiovi-
sual art installation.

Keywords

Pitch Estimation, MIR, YIN algorithm, Aubio,
Audio Simulation.

1 Introduction

Pitch detection algorithms have been used in
various contexts in the past:

• audio editing programs (pitch correction
and time scaling) such as Melodyne1,

• analysis of complicated melodies of world
music cultures (Indian Classical music),

• music notation programs like Sibelius2,

• MIDI interfaces such as the Roland GI-20
to get data from guitar MIDI pickups.

Since it lies firmly within the domain of music
information retrieval (MIR), pitch estimation
has many applications in recommender systems,
sound source separation, genre categorization
and even music generation. With the popular-
ity of machine learning, neural-networks, and
data mining, audio signal processing tools are
utilized more and more to create user-specific

1http://www.celemony.com/en/melodyne/
what-is-melodyne. URLs in this paper were veri-

fied on Feb. 16, 2017.
2http://www.avid.com/sibelius

systems. When considering applications for
pitch detection and source separation, we often
consider the example of identifying individual
speakers at a round-table event. Computers,
unlike humans, have a difficult time identifying
the words of a particular person if multiple peo-
ple are communicating with each other simulta-
neously. Building on that concept, we simulate
a conversation between multiple computers us-
ing musical notes. The YIN pitch detection al-
gorithm is employed to detect trigger notes, to
which other computers in the network respond.
Since we desire a continuous conversation, we

must use an efficient detection algorithm with
the following features:

• real time response,

• minimal latency,

• accurate identification in the presence of
noise.

We need to be careful about both the latency
of the attack and of the pitch detection algo-
rithm since if a note is played, the human ear
needs at least seven periods of a waveform to
identify its pitch. Hence, note onsets and note
pitches are not directly related [3]. Additionally,
we must ensure that the pitch recognition algo-
rithm is reasonably robust to the sort of noise
which is inevitable in a performance scenario.
After comparing different methods for pitch

estimation, as in [3], we chose the YIN algo-
rithm for its real-time tracking ability. YIN is
a time-domain algorithm based on the autocor-
relation method for estimation. [2]. Using the
common autocorrelation method, its error rates
are analyzed and corrected for every new itera-
tion to ensure the best possible accuracy. Using
YIN is beneficial since it can accurately analyze
higher frequencies which we might use as trigger
notes in our system. To make sure that we have
the lowest possible pitch identification latency
and have a very small frame size for incoming

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 155

audio, we use the YIN algorithm implemented
in the aubio framework [1], extended further as
an addon in openFrameworks3 for our computer
network.

2 Methods and Implementation

Since fundamental frequency identification
works well on monophonic sounds (e.g., a guitar
solo or any wind instrument), it was decided to
use this approach to reduce the problem of in-
correct triggers for the other computers in the
network. Individual notes are generated one af-
ter the other at randomized tempos (to mimic
the prosody of human speech) in a particular
musical scale. Every other computer has its own
“voice” which does not overlap with that of any
other computer in the network. At a given point
in time, multiple “people” can “speak” simulta-
neously.
The YIN algorithm is accurate enough to suf-

ficiently identify the trigger notes at any given
time within the chaotic yet pleasing tone of the
conversation, and the computers react accord-
ingly. Visual feedback is provided to portray
whether a computer is voicing itself or is re-
maining silent in response to the trigger note.
For the test system, three computers, each with
their own voice, constituted the network.

Figure 1: Overview of the system

2.1 Audio

Each voice for the “speaker” in the system is
a musical scale. For our demonstration, each

3See https://github.com/aubio/ofxAubio and

http://openframeworks.cc/

computer was set to the G, C and D Major
scale respectively. The choice for these par-
ticular scales was arbitrary and baseless. The
ofxStk4 add-on was used to generate the sounds
using the Moog synthesis class. The generated
sound has a reverb effect applied to it in order to
create a wider stereo image when all computers
are in place.
In order to mimic the characteristics of hu-

man speech, there is no fixed tempo for the sys-
tem. When a particular trigger note is heard by
a computer, it goes silent and shifts its scale by
an octave higher or lower and also changes its
corresponding trigger note in order to keep the
whole system ambiguous. The ambiguity lies in
the fact that when all computers are communi-
cating simultaneously, it is difficult to identify
what the actual trigger note is and maintains
the illusion of an improvised conversation. The
exact flow of the network is represented in Fig-
ure 1. This flow remains constant for any new
computer added to the system.

2.2 Graphics

Graphical feedback is used to convey whether a
particular computer is active or silenced. We
used the ofxParticles add-on to implement
particle physics in order to visually represent
the current state of our system.

Figure 2: Screenshot of the particle physics
graphics

White particles at any given instant repre-
sent an “in-active state” of the computer, and
colored particles are used when the computer is
active (as shown in Figure 2). The color of the
particles for each computer changes when it be-
comes active after being inactive for a random
amount of time, as if joining the conversation

4https://github.com/Ahbee/ofxStk, which encap-

sulates the original Synthesis ToolKit, https://ccrma.
stanford.edu/software/stk/

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 156

again to state its opinion. Particles are emitted
from the exact center, spiral outward, eventu-
ally fade out. There is a pseudo-gravitation ef-
fect that makes the particles orbit around the
center of the screen after their spiral trajec-
tory. We designed this visual tool to create a
psychedelic effect for the audience.

2.3 Evaluation

When presenting this system to a group of ob-
servers it was noticed that despite having an
underlying pattern to the changes in scale and
trigger conditions, they could not detect this
and the audience expressed that they believed
the computers were having a conversation, al-
beit through musical notes. The audience also
responded that having a visual feedback gave
each computer a unique personality.

3 Future Work

The future scope of this project involves the in-
tegration of machine learning in order to im-
plement musical improvisations as a response
to the trigger conditions. This would make the
whole system more expressive (i.e., trivial ac-
tions such as having the computer go silent or
be active, etc.). Polyphonic sound identifica-
tion is also a viable addition to have a more
immersed experience of musicians improvising
with one another.

4 Conclusion

In this paper we presented pitch estimation as
a tool for a musical performance system. Since
the future scope does involve the use of ma-
chine learning and data mining techniques, as
is the custom with music information retrieval,
this was a relevant stepping stone. Presently,
this system is being modified to include multiple
triggers for the whole system. We are trying to
move away from the initial condition of having
only one computer respond to a single trigger
note but have multiple computers react to more
than one trigger added into the network.

5 Acknowledgements

Many thanks to the CCRMA community for its
support.

References

[1] P Brossier. Automatic Annotation of Musi-
cal Audio for Interactive Applications. Cen-
tre for Digital Music Queen Mary University
of London, Diploma of(August):215, 2006.

[2] Alain de Cheveigné and Hideki Kawahara.
YIN, a fundamental frequency estimator for
speech and music. The Journal of the Acous-
tical Society of America, 111(4):1917–1930,
2002.

[3] P De La Cuadra. Efficient pitch detection
techniques for interactive music. Interna-
tional Computer Music Conference, pages
403–406, 2001.

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 157

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 158

Porting WDL-OL to LADSPA/LV2

Jean-Jacques Girardot

Independent programmer

25 Rue Pierre Bérard

42000 Saint-Etienne, France

jj@girardot.name

Abstract

WDL-OL is an open source framework that is used
to develop audio plug-ins in various formats (VST,
VST3, AU, RTAS, AAX) for Mac and Windows
operating systems. The proposition is to add the
possibility to develop plug-ins in LADSPA and
LV2 formats under Linux.

Keywords

Audio Plug-ins, WDL-OL, LADSPA, LV2

1 Introduction

WDL / IPlug is a simple-to-use C++
framework for developing cross platform audio
plugins and targeting multiple plugin APIs with the
same code. Originally developed by Schwa/Cockos,
IPlug has been enhanced by various contributors, in
particular Oliver Larkin, whose version seems to be
the most used.

Plug depends on WDL, and that is why this
project is called WDL-OL, although most of the
differences from Cockos' WDL are to do with IPlug.
The source code for the framework can be
downloaded from the WDL repository [1].

There exists also a very active discussion list
about WDL [2]

2 The Geek Meeting

The author has developed a few freeware
plug-ins (pictured here: ClockWise Orange which
manages multi tap multi delays, and Strawberry
Feel which provides a graphical audio language)
using WDL-OL, and he wishes to make them
available to the Linux community. Some other
plug-ins authors may whish to do the same thing,
and therefore add to the plug-ins offer under
Linux. For this, we need to add to WDL-OL the
LADSPA/LV2 support (for DAWs, but also for
tools like ChucK), and to find people
knowlegeable on the subject and willing to help us
in this development.

References

[1] WDL Git Repository:
https://github.com/olilarkin/wdl-ol

[2] WDL discussion Forum:
http://forums.cockos.com/forumdisplay.php?
f=32

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 159

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 160

Workshops

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 161

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 162

Workshops	

1-Yoshimi	and	the	reluctant	developer	by	Will	Godfrey	(United	Kingdom)	

A	workshop	overview	of	my	involvement	with	the	Yoshimi	soft-synth,	discussion	and	

current	status,	including	demonstrations	

See	https://sourceforge.net/projects/yoshimi/	

	

2.	Free	Software	and	DIY	at	Radio	Panik	by	Frederic	Peters,	Arthur	Lacomme	et	

Suzie	Suptille	(Belgium)	

Radio	Panik	is	a	community	FM-radio	created	in	Brussels	in	1983,	it	has	been	using,	

adapting	and	creating	free	software	for	much	of	its	activity	for	years.	This	workshop	

aims	to	explore	and	discuss	our	current	audio	practices,	from	broadcast	systems	to	

creative	tools.	

See	http://www.radiopanik.org/	

3.	Building	a	local	linux	audio	community	by	Daniel	Appelt	(Germany)	

The	Open	Source	Audio	Meeting	Cologne	is	a	monthly	gathering	of	audio	and	free	

software	enthusiasts.	This	workshop	provides	insights	how	such	a	regular	event	may	be	

organized.	

See	http://cologne.linuxaudio.	org	

4.	Generative	Music	with	Recurrent	Neural	Networks	par	Kosmas	Giannoutakis	

(Institut	für	Elektronische	Musik	und	Akustik	Inffeldgasse,	Graz,	Austria)	

In	 this	 workshop	 the	 generative	 music	 capabilities	 of	 artificial	 recurrent	 neural	

networks	 will	 be	 explored,	 using	 an	 abstractions	 library	 for	 the	 programming	

environment	Pure	Data,	 called	RNMN	(Recurrent	Neural	Music	Networks).	The	 library	

provides	 the	 basic	 building	 blocks,	 neurons	 and	 synapses,	 which	 can	 be	 arbitrarily	

connected,	 easily	 and	 conveniently,	 creating	 compound	 topologies.	 The	 framework	

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 163

allows	real	time	signal	processing,	which	permit	direct	interactions	with	the	topologies	

and	quick	development	of	musical	intuition.	For	the	workshop,	a	laptop	with	a	build-in	

microphone,	 Pure	 Data	 (PD-vanilla	 0.47.1	 version	 is	 recommended)	 installed	 and	

headphones	 is	 required	 for	 the	 participants.	 Experience	 with	 visual	 programming	

is	a	plus	but	not	a	necessary	prerequisite.	It	will	be	explained	the	basic	principles	of	the	

framework	and	it	will	be	demonstrated	the	construction	of	some	basic	topologies.	In	the	

end	the	participants	can	create	their	own	topologies	which	can	demonstrate	to	the	other	

participants.	

5.	Origin,	features	and	roadmap	of	the	MOD*	Duo	by	Mauricio	Dwek,	Gianfranco	
Ceccolini	&	Filipe	Coelho	(Germany)	

(*	Musical	Operating	Devices	For	Experienced	Musicians)	

In	this	workshop,	MOD	Devices	tells	its	story	and	shows	its	heavy	use	of	Linux	Audio	

technologies	for	the	MOD	Duo.	

The	workshop	will	consist	of:	

• History	on	how	the	MOD	Duo	came	to	be	

• What	(Linux	Audio)	technologies	are	used	inside	

• Challenges	and	difficulties	found	while	making	the	Duo	

• Showing	the	Duo	in	action	

• Things	to	come	soon	

The	audience	will	be	encouraged	to	get	their	hands	on	the	device	and	try	out	its	features.	

See	https://moddevices.com/	

	

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 164

6.	Too	Much	Qstuff*	To	Handle	by	Rui	Nuno	Capela	(Portugal)	

Following	 in	 the	 tradition	 of	 LAC2013@IEM-Graz,	 LAC2014@ZKM-Karlsruhe,	

LAC2015@JGU-Mainz	 and	 miniLAC2016@c_base-Berlin,	 this	 talk/workshop	 is	 once	

again	being	proposed	as	an	informal	opportunity	for	open	debate	and	discussion,	over	

the	so	called	Qstuff*	software	constellation.	Although	starring	Qtractor	[4]	as	the	main	

subject,	 all	 users	 and	developers	 are	welcome	 to	 attend,	whether	or	not	 they're	using	

any	of	the	Qstuff*.	An	all-inclusive	talk/workshop.	

The	Qstuff*	are,	in	order	of	appearance:	

[1]	QjackCtl	-	A	JACK	Audio	Connection	Kit	Qt	GUI	Interface	

http://qjackctl.sourceforge.net	

https://github.com/rncbc/qjackctl	

[2]	Qsynth	-	A	fluidsynth	Qt	GUI	Interface	

http://qsynth.sourceforge.net	

https://github.com/rncbc/qsynth	

[3]	Qsampler	-	A	LinuxSampler	Qt	GUI	Interface	

http://qsampler.sourceforge.net	

https://github.com/rncbc/qsampler	

https://github.com/rncbc/liblscp	

[4]	Qtractor	-	An	audio/MIDI	multi-track	sequencer	

http://qtractor.org	

http://qtractor.sourceforge.net	

https://github.com/rncbc/qtractor	

[5]	QXGEdit	-	A	Qt	XG	Editor	

http://qxgedit.sourceforge.net	

https://github.com/rncbc/qxgedit	

[6]	QmidiNet	-	A	MIDI	Network	Gateway	via	UDP/IP	Multicast	

http://qmidinet.sourceforge.net	

https://github.com/rncbc/qmidinet	

[7]	QmidiCtl	-	A	MIDI	Remote	Controller	via	UDP/IP	Multicast	

http://qmidictl.sourceforge.net	

https://github.com/rncbc/qmidictl	

[8]	synthv1	-	an	old-school	polyphonic	synthesizer	

http://synthv1.sourceforge.net	

https://github.com/rncbc/synthv1	

[9]	samplv1	-	an	old-school	polyphonic	sampler	

http://samplv1.sourceforge.net	

https://github.com/rncbc/samplv1	

[10]	drumkv1	-	an	old-school	drum-kit	sampler	

http://drumkv1.sourceforge.net	

https://github.com/rncbc/drumkv1	

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 165

	

7.	Moony	–	rapid	prototyping	of	LV2	(MIDI)	event	filters	in	Lua	by	Hanspeter	

Portner	(Switzerland)	

In	need	of	a	specific	event	filter	no	yet	existent	for	your	DAW	or	live	setup?	No	time	or	

skill	to	write	your	own	MIDI	plugin	in	C/C++?	Moony	comes	to	the	rescue	and	lets	you	

script	your	filters	in	Lua	on-the-fly	for	any	LV2	host.	Come	and	learn	about	the	LV2	atom	

event	system	and	rapid	prototyping	in	Lua.	

See	https://open-music-kontrollers.ch/	

8.	Interactive	music	with	i-score	by	Jean-Michaël	Celerier	

(Laboratoire	Bordelais	de	Recherche	en	Informatique,	France)	

This	workshop	presents	the	i-score	(www.i-score.org)	sequencer.	

It	will	present	the	challenges	and	the	rationale	that	led	to	the	creation	of	the	software,	

that	is,	providing	a	dedicated	tool	for	temporal	design	in	an	interactive	context.		

The	construction	of	a	score	will	be	detailed	on	practical	examples	involving	audio-visual	

features	and	interaction	with	a	familiar	creative	coding	environment	such	as	PureData,	

openFrameworks	or	Processing.	

See	http://www.i-score.org	

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 166

	

9.	Smartphone	Passive	Augmentation	by	John	Granzow*	&	Romain	Michon**	

(*	University	of	Michigan	-	United	States,	**	Stanford	University	-	United	States)	

In	 this	 4	 hours	 workshop	 (2	 sessions)	 we	 will	 present	 Mobile3D,	 a	 library	 for	

introducing	 passive	 musical	 augmentations	 to	 mobile	 phones.	 The	 library	 allows	

participants	 to	 quickly	 leverage	 the	 parametric	 features	 of	 OpenScad	 a	 functional	

programming	 language	 for	 text	 based	 computer	 assisted	 drawing	 (CAD).	 Several	 3D	

printers	 will	 be	 on	 hand	 to	materialize	 designs.	 The	workshop	 gives	 participants	 the	

tools	to	customize	their	smartphones	for	musical	interaction.	

See	https://ccrma.stanford.edu/~rmichon/mobile3D/	

	

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 167

	 	

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 168

Concerts

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 169

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 170

	

Concerts	

Thursday,	May	18	–	06:30pm	–	08:00pm	-	Auditorium	de	la	Maison	de	
l’Université	–	10	rue	Tréfilerie	–	Saint-Etienne	

Concert	N°1:	Mixed	Music	

It	is	a	first	concert	featuring	works	of	mixed	music	(music	with	acoustic	instruments	and	

electronic	devices	that	interacts).	These	works	are	pieces	whose	electronic	devices	have	

been	 developed	 with	 real-time	 free	 software	 (FAUST	 and	 SuperCollider).	 They	 are	

played	by	regional	musicians	and	students	from	Saint-Etienne.	

1.	SmartMachine	musicale	(20’	–	2017	-	Création)	

With	the	students	of	La	Salle	secondary	school	(Saint-Etienne),	Robert	Chauchat,	music	

teacher,	Roméo	Monteiro,	percussionist,	solist	from	Ensemble	Orchestral	Contemporain	

and	Gérard	Authelain,	teacher	and	musician	(GRAME).	

Guided	 by	 their	 teacher	 and	 musicians,	 the	 students	 have	 explored	 the	 relationship	

between	 the	 technical	 object	 and	 the	 musical	 creation,	 but	 also	 the	 musical	 gesture	

(using	 the	 Smartfaust	 apps	 for	 smartphone	 designed	 by	 GRAME,	 National	 Center	 of	

Music	 Creation	 in	 Lyon).	 They	 have	 gradually	 created	 a	 new	 kind	 of	 sound	 scene,	

halfway	 between	 a	 performance	 and	 a	 visual	 installation.	 They	 invite	 you	 tonight	 to	

discover	 a	 space	 of	 research,	 questioning	 the	 aesthetic	 of	 the	 concert,	 the	musician’s	

attitude	and	his	instrument!	

Project	 conducted	 by	 a	 partnership	 between	 GRAME	 and	 Ensemble	 Orchestral	

Contemporain,	 with	 the	 support	 from	 DRAC	 Auvergne	 –	 Rhônes-Alpes	 and	 the	

Department	of	Loire.		

2.	Smartbones	(20’	-	2016)	

With	 brass	 section	 students	 of	 the	 Conservatory	 of	 Valence	 (Léane	 Berthaud,	 Alice	

Chakroun,	 Noam	 Leenhardt,	 Rami	 Leenhardt,	 Meryem	 Ouannas,	 Antonin	 Vinay)	 and	

Pierry	Bassery,	musician	and	teacher.	

In	 order	 to	 arouse	 the	 curiosity	 and	 the	 listening,	 the	 students	 of	 the	 conservatory	 of	

Valence,	 guided	 by	 the	 trombonist	 Pierre	 Bassery,	 combine	 repertoire,	 improvisation,	

creation	 and	 new	 technologies	 with	 pieces	 for	 trombone/tuba.	 The	 incorporation	 of	

smartphones	on	the	 instruments	allows	the	musicians	to	play	with	Smartfaust	apps	as	

the	 continuation	 of	 the	 instrumental	 gesture.	 Thus	 these	 new	 instruments	

(“Smartbones”-	smartphones	&	trombones)	will	generate	a	sound	material	that	will	lead	

the	 students	 to	 imagine	 choreographies	 in	which	dance,	 trombone	and	electro	will	 be	

mixed	and	confronted.	

3.	Peyote	(16’	-	2016)	by	Sébastien	Clara,	mixed	music	for	trio	&	electronics	

With	Alice	Szymanski,	flute,	Justine	Eckhaut,	piano	and	Florent	Coutanson,	saxophones.	

In	1936	Antonin	Artaud	 left	Europe	to	travel	 to	Mexico.	This	departure	symbolizes	his	

break	with	 surrealist	 aesthetics.	 "The	 rationalist	 culture	of	Europe	has	 gone	bankrupt	

and	I	have	come	to	the	land	of	Mexico	to	seek	the	bases	of	a	magical	culture	that	can	still	

spring	from	the	forces	of	Indian	soil."	However,	by	a	romantic	desire	to	touch	the	bottom	

or	a	personal	 inner	experience	 to	better	understand	his	 fellows,	Artaud	undertakes	 "a	

descent	to	come	out	of	the	day",	a	 journey	within	his	 journey,	a	transcendental	abysm.	

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 171

Artaud	 sets	 out	 to	 research	 "the	 ancient	 solar	 culture".	 To	 do	 this,	 he	 wants	 to	 be	

introduced	to	the	culture	of	the	men	and	women	of	the	Sierra	Tarahumara.	

Peyote	retraces	the	dances	of	the	Tarahumara	to	the	glory	of	the	sun,	which	undeniably	

influenced	the	work	of	Antonin	Artaud.	

	

Friday,	May	19	–	08:00pm	–	12:00pm	-	Auditorium	de	la	Maison	de	
l’Université	–	10	rue	Tréfilerie	–	Saint-Etienne	

Concert	N°2:	Electronic	Music	

It	is	a	concert	of	electronic	music	with	musicians	coming	from	the	USA	or	from	various	

European	 countries.	 They	will	 play	works,	mostly	 experimental,	 realized	with	 diverse	

and	innovative	digital	devices,	all	involving	Open	Source	software.	

1.	Inaudible	Harp	(10’)	by	Bruno	Ruviaro	&	Juan-Pablo	Caceres		

(Santa	Clara	University		-	USA)	

Music	for	harp,	distant,	played	via	Internet,	and	a	computer	system	for	real	time	sound	

synthesis	and	processing.	

One	 of	 "origin	 tales"	 of	Ambient	Music	 has	Brian	Eno	 stuck	 in	 a	 hospital	 bed	 after	 an	

accident:	 lying	 immobile	 in	 bed,	 he	would	 listen	 to	 records	 played	by	 visiting	 friends.	

One	day	it	was	harp	music,	with	the	volume	turned	so	low	that	the	plucked	strings	were	

almost	inaudible.	"At	first	I	thought,	'Oh	God,	I	wish	I	could	turn	it	up,"	Eno	remembers.	

"But	 then	 I	 started	 to	 think	how	beautiful	 it	was.	 It	was	 raining	heavily	 outside	 and	 I	

could	 just	hear	 the	 loudest	notes	of	 the	harp	 coming	above	 the	 level	 of	 the	 rain."	Our	

telematic	duo	improvisation	is	inspired	by	this	image.	

The	duo	utilizes	SuperCollider	to	generate	and	process	sounds,	and	JackTrip	to	stream	

audio	over	the	internet.	JackTrip	is	a	Linux	and	Mac	OS	X-based	system	used	for	multi-

machine	network	performance	over	the	Internet.	It	supports	any	number	of	channels	(as	

many	as	the	computer/network	can	handle)	of	bidirectional,	high	quality,	uncompressed	

audio	signal	streaming.	The	duo	usually	performs	with	one	player	on	location,	and	the	

other	remotely	from	Chile	or	the	USA.	

2.	Vox	Voxel	(12’	–	2015)	by	Fernando	Lopez-Lezcano*	&	John	Granzow**	

(*	 Center	 for	 Computer	 Research	 in	Music	 and	 Acoustics	 -	 Stanford	 University	 -	 USA,	 **	

University	of	Michigan	-	USA)	

Music	 for	 two	 interpreters,	 a	 3D	 printer,	 a	 Daxophone,	 a	 Korg	 Nanokontrol	 2	 and	 a	

computer.	

From	an	 IBM	720	 line	printer	playing	Three	Blind	Mice	 in	1954	 to	dot	matrix	printers	

playing	 love	 songs	 and	 Queen,	 mechanical	 noises	 coming	 from	 printers	 were	 slowly	

tamed,	domesticated	and	controlled,	and	countless	unproductive	hours	of	programming	

time	were	spent	 in	 figuring	out	how	to	make	 those	noises	 into	musical	notes,	phrases	

and	whole	pieces	for	the	enjoyment	of	the	IT	team.	From	deafening	antique	mainframe	

line	 printers	 to	 whisper	 quiet	 inkjets,	 all	 have	 been	 at	 the	 spotlight	 of	 a	 concert	

performance	(or	at	least	a	basement	computer	room).	

VoxVoxel	 is	 "composed"	 by	 designing	 a	 suitably	 useless	 3D	 shape	 and	 capturing	 the	

sound	 of	 the	 working	 3D	 printer	 using	 piezoelectric	 sensors.	 Those	 sounds	 are	

amplified,	modified	and	multiplied	through	live	processing	in	a	computer	using	Ardour	

and	LV2/LADSPA	plugins,	and	output	in	full	matching	3D	sound.	3D	pixels	in	space.	

The	piece	is	dedicated	to	our	endangered	wooden	3d	printer,	slowly	declining	with	the	

rise	 of	 folded	metal	 frames	 in	 entry-level	machines.	 The	wood,	 (if	 fragile)	 is	 good	 for	

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 172

contact	one	view	of	an	object	and	score	for	the	piece	vibrations,	to	amplify	rhythms	of	

the	 tool-path	 and	 the	 frequencies	 of	 stepper	 motors.	 This	 rare	 3d	 printer	 takes	 six	

minutes	to	warm	up	its	extruder.	For	this,	 it	has	also	fabricated	an	array	of	extensions	

for	its	equally	endangered	human	performer.	

	

3.	Pointillism	(20’	–	2016)	by	Iohannes	Zmolnig	

(Institute	 of	 Electronic	Music	 and	 Acoustics	 -	 University	 of	Music	 and	 Performing	 Arts	 -	

Graz	–	Austria)	

Pointillism	is	a	solo	live-coding	performance	in	Pd.	Both	the	code	representation	and	the	

generated	audio	use	“points”	and	“dots”	as	building	blocks:	the	music	is	generated	using	

morse	 code	 patterns,	 the	 code	 is	 written	 in	 “Braille”	 (the	 dot--based	 writing	 system	

especially	designed	for	blind/visually-impaired	people).	

The	 performance	 is	 an	 ironic	 statement	 on	 the	 popular	 “show--us--your--screens”	

paradigm,	by	presenting	the	code	in	a	form	that	does	not	even	pretend	to	be	readable.	

	

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 173

4.	Seven	Sphere	Journey	(12’	-	2016)	by	Broch	Vilbjorg	

	(Anti-Delusion	Mechanism	-	Netherlands)	

Music	for	computer	generated	sound,	voice,	dance	and	video	projection	

This	project	explores	generative	sound,	graphics	and	algorithmic	composition	based	on	

the	octonion	algebra.	The	octonions	form	an	8	dimensional	normed	division	algebra.	The	

project	started	2016	and	and	is	in	ongoing	development.	The	octonions	are	an	extremely	

rich	 subject	within	mathematics,	with	 symmetry	 relations	 to	 Lie	 algebras	 and	not	 the	

least	to	the	so	called	special	Lie	groups.	

The	 unit-length	 octonions	 trace	 the	 seven-sphere:	 S7	 -	 a	 7	 dimensional	 surface	 in	 8	

dimensional	 space.	 The	 project	 explores	 orbits	 in	 8	 dimensional	 space	 for	 audio	

synthesis	and	graphics.	

5.	1)3V1532	(25’	-	2012)	by	David	Runge		

(Elektronic	Studio,	TU	Berlin	&	c-base	-	Germany)	

1)3\/1532	(deviser)	is	drone/noise/experimental	soundscaping.	

The	 aural	 journey	 leads	 to	 places	 like	 simple	 repetitve	 guitar	 tunes,	 loops,	 feedback	

manipulation,	modified	 samples	 of	 field	 recordings,	 DIY	 analog	 synthesizers,	 toys	 and	

the	like.	

Experimentation	for	the	greater	good!	

6.	 5-HT_five	 levels	 to	 zero	 (28’	 –	 2016)	 by	 Tina	 Mariane	 Krogh	Madsen	 &	Malte	

Steiner		

(Block4	-	Germany)	

For	Linux	computer	with	Pure	Data,	synthesizer,	div	pedals	and	instruments	for	noise		

The	 concert	 5-HT_five	 levels	 to	 zero	 is	 based	 on	 the	 structural	 qualities	 of	 the	

neurotransmitter	 serotonin.	 The	 dynamics	 of	 the	 molecule	 will	 be	 improvised	 and	

performed	 live	 in	 a	 dynamic	 and	 counterbalanced	 noise	 act	 that	 deals	 with	 both	 the	

balances	 as	 well	 as	 the	 imbalances	 inherent,	 resulting	 in	 chaotic	 states	 caused	 by	

disruption	of	this	unit	in	the	brain.	For	the	piece,	TMS	has	created	a	score	that	captures	

the	 dynamics	 of	 the	musical	 composition,	 where	 the	 audio	will	 be	 accompanied	 by	 a	

projection	of	a	visual	score	created	in	Blender	and	Pure	Data.	

	 	

7.	Level	5	Alert	(30’	-	2016)	by	Frederic	Peters,	Arthur	Lacomme	and	Suzie	Suptille		

(Radio	Panik	-	Belgium)	

Live	 performance;	 the	 show	 was	 created	 after	 2016	 Brussels	 bombings	 as	 an	

independent	and	uncontrolled	mean	of	expression,	as	a	recurrent	collective	work	mixing	

experimental	and	creative	writing,	music	and	sound	effects.	

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 174

8.	The	Infinite	Repeat	(22’)	by	Jeremy	Jongepier		

	(linuxaudio.org	–	USA	&	MOD	Devices	-	Germany)	

For	guitar,	computer	and	voice.	

A	musician	with	over	25	years	of	experience	and	a	computer	with	Linux.	That's	what	it	

boils	 down	 to.	 The	 result:	 conventional,	 solid	 song-writing,	 with	 an	 eclectic	 tinge	

because	 of	 the	 choice	 to	 not	 walk	 the	 threaded	 paths	 coupled	 with	 an	 auto-didactic	

background,	an	outspoken	personal	taste	and	an	open-minded	world-view.	

This	year	The	Infinite	Repeat	will	be	all	about	going	back	to	the	roots	and	mixing	that	up	

with	the	latest	Linux	based	technology.	So	expect	some	solid	acoustic	singer-songwriter	

material	with	a	modern	touch	and	a	Linux	device	on	the	floor.		

See	http://theinfiniterepeat.com	

Saturday,	May	21	–	08:30pm	–	10:00pm	–	L’Estancot	–	10	Rue	Henri	
Dunant	-	Saint-Étienne	

Concert	N°3:	Acousmatic	Music	

1.	Voce	3316	(3’	-	stereo),	Massimo	Fragalà,	Italy.	

2.	Kecapi	III	(10’56	–	octophony),	Patrick	Hartono,	Indonesia.	

3.	Inuti	(9’	-	16	channels),	Helene	Hedsund,	United	Kingdom.	

4.	Profon	(7’	–	stereo),	Magnus	Johansson,	Sweden.	

5.	Dark	Path	#6	(5’	–	stereo),	Anna	Terzaroli,	Italy.	

6.	Kruchtkammer	(6’	–	quadriphony),	Lukas	Tobiassen,	Germany.	

7.	Definierte	Lastbedingung	(11’40	–	octophony	ambisonic),	Clemens	Von	Reusner,	

Germany.	

8.	Suite	of	miniatures		(10’	-	stereo),	Bernard	Bretonneau,	France	

9.	Concret	X	(5’	–	ambisoniX),	Jean-Marc	Duchenne,	France	

	

	 	

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 175

	 	

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 176

Multimedia
Installations

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 177

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 178

	

Multimedia	installations		

	

1.	OUPPO	(Harris	Louise	-	United	Kingdom)	

Ouppo	is	a	generative	audiovisual	installation	composed	of	four	modular	units	for	video	

mapping.	

	

2.	PROFON	(Julien	Ottavi	-	France)	

Profon	is	a	performative	device	composed	of	a	collection	of	flower	pots	moved	in	time	

and	space.	

	

3.	SONIC	CURRENT	(Giannoutakis	Kosmas	-	Austria)	

Sonic	current	is	a	site-specific	sound	installation	which	transform	architectural	locations	

into	 “sonic	 conscious”	 organisms.	 The	 transformation	 of	 the	 site	 into	 a	 body,	with	 its	

sense	organs	(microphones)	and	actuators	(loudspeakers),	enable	the	site	to	articulate	

and	manifest	itself	in	an	open	dialogue	with	its	visitors.	

	

4.	THETA	FANTOMES	(Apo33	Collective	-	France)	

Thêta	 Fantomes	 is	 a	 cross-disciplinary	 digital	 game/art	 project.	 Its	 an	 art	 piece	

developed	by	APO33	 to	 realise	 some	of	our	 ideas	about	using	 real-time	neuronal	data	

processing	with	game	play	in	a	hybrid	transcendental	experience.	

	

5.	ZIC	STREET	BOX	((Lionel	Rascle)	

Conservatoire	de	Musique	de	Saint-Chamond	-	France	

SicStreetBox	 is	 an	 interactive	 equipment	 targeted	 for	 public	 demonstration	 and	Raise	

awareness	 to	 the	 use	 of	 technologies	 for	 sound	 art	 creation.	 The	 songs	 used	 in	 the	

installation	are	designed	by	the	pupils	of	the	computer	music	course	in	Saint-Chamond	

music	school.		

	

6.	SOUND	SCULPTURES	(Thomas	Barbe	-	France)	

The	sound	sculptures	of	Thomas	Barbe	question	the	 link	between	sculptural	 form	and	

sonorous	 generation.	 His	 creations	 situate	 the	 sound	 in	 the	 spatial	 environment	 in	 a	

tangible	way.	They	question	the	link	between	visual	form	and	sound	activity.	

	

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 179

LAC2017 - CIEREC - GRAME - Université Jean Monnet - Saint-Etienne - France 180

Linux Audio Conference 2017

lac2017.univ-st-etienne.fr

