
Harry van Haaren, OpenAV, LAC 2017



CTLRA

1) Modern Controllers

2) Why a library

3) Users and Mappings

4) Demo!

5) Bonus Stuff...



Modern Controllers



Modern Controllers

"Next Gen" Controllers!

● USB HID devices

● "HD" Screens

● Huge functionality!

● Application support…



Modern Controllers

MIDI Mapping!

● APC40 released in 2014

○ USB MIDI device

○ Can't do full updates



Modern Controllers

HD Screens?

● MIDI messages

○ SysEx?

○ No thanks :)



Modern Controllers

Need for a better API

● Software ⇔ Hardware

○ Easier communication

○ Faster to support modern features

● Required for Tight Integration

○ Input Multiplexing



Why A Library?





A Library for Controller Access

Developer implements library support

● Growing list of devices supported

● New devices added are "free"

● Don't re-implement device support

○ Testing is a time-sink!



Generic Event API

Abstract away the Device

● Input from Events

○ Button, Slider, Encoder, Grid

● LED feedback function

● API to blit pixels to a screen



Linux Support

Community Supported Devices

● Once-off implementations of little value

○ (Unless user has that exact controller)

● Centralize support in a library

○ Enabled by "Generic Events"



Fancy Features

Hotplug

● Essential to save a Musician on stage

● Difficult to implement

○ Time consuming to test







Users and Mappings



Mappings and User-eXperience

Power User

● Can "script" controls as required

● Has huge flexibility and power

● Creates awesome mappings

Simple Workflow

● Can use software provided mapping

○ Just like MIDI mapping

● Not as powerful, but achieves goal

○ Mapping exists? Use it!



Power User

Uniting Software and Hardware

● Match functionality of controller to software

○ Just as the user requires

○ Depends on Hardware / Software combo

○ Depends on Musicians Workflow



Timeline  (Just for fun :)



Jan '16

Bought a USB HID 
drum-pad controller

Spring  '16

Integrated drum-pad 
and Fabla 2.0

miniLAC  
'16

Demo Fabla 2.0 with a 
specific USB HID device

Summer '16

Understand requirements 
and design v1 "ctlr" API

Autumn '16

Implement v1 and 
discuss with other 
developers, design v2



Dec '16

Development of 
Ctlra codebase

Jan '17

Finish initial implementation 
Write Ctlra paper for LAC

Feb '17

Mixxx integration and 
testing of v2 Ctlra API

(Specifically Hotplug)

Mar/Apr  '17

Minor updates to API, 
Build out demo apps

LAC '17

Ctlra library release!



Demos!



Demo

1. Simple Events

2. Simple Feedback

3. Tight Integration

4. Scripting in C

5. DJ Hotplug



Next Steps

1. Discuss Event Loops

2. Integrate with LV2 Atoms

3. Get Applications using it

4. Discuss "sharing" of devices

5. Support for BlueTooth, MIDI, 
OSC, Arduino, Serial etc..



?  Questions  ?



Bonus Demo AVTK + Ctlra



Bonus Slides! Woop Woop :)



Event Loops

How to manage threading / event handling

● Current API has   idle()   function

○ Must be called periodically

● Expose events via ringbuffer?

○ How to handle hotplug of new device.. New ring?



LV2 Atom Integration

Ctlra Events map to LV2 Atoms quite nicely...

● Could the host pass these events "through" to the plugin?

○ Abstract the environment from the plugin?

○ Enable "sharing" of a device?

● Requires "Options" extension function to accept new device?



USB Device Access

LibUSB

● Enables bulk, interrupt, isochronous, control endpoints

● API provides Sync and ASync modes

○ Async required for latency with multiple devices

HID Raw

● Won't support all devices (Screens are often USB "bulk" endpoints)

● Works better for certain devices..?



Timestamps

Arrival time of Event?

● Is it required at library level?

○ Time, Threading and ASync events… Fun!

● Expose an application defined callback to "set" the timestamp?


