
PlayGuru, a music tutor

Marc Groenewegen
Hogeschool voor de Kunsten Utrecht

Ina Boudier-Bakkerlaan 50
3582 VA Utrecht
The Netherlands

marc.groenewegen@hku.nl

Abstract

PlayGuru is a practice tool being developed for be-
ginning and intermediate musicians. With exercises
that adapt to the musician, the intention is to help
a music student to develop several playing skills and
motivate them to practice in-between classes. Be-
cause all exercise interaction is entirely based on
sound, the author believes PlayGuru is particularly
useful for blind and visually impaired musicians. Re-
search currently focuses on monophonic exercises.
This paper is a report of the current status and ul-
timate goals.

Keywords

Computer-assisted music education, DSP, machine
learning

1 Project objectives

The main reason for writing this paper is to
bring the project to the attention of others so
they can use, improve and benefit from the
ideas, technology and the intended end prod-
uct.

Even though few user experiences can be re-
ported at the time of writing, some intermediate
results and plans for the near future are given
towards the end of this paper.

PlayGuru is a music tutor that operates ex-
clusively in the sound domain. Because the fo-
cus is only on music, the author believes it is a
very useful tool for beginning and intermediate
musicians and particularly useful for blind and
visually impaired musicians.

1.1 Practice motivation

How does an amateur musician find the moti-
vation to pick up their instrument and play?
What motivates children to practice?

These questions probably have a large spec-
trum of answers. Let us focus on two motiva-
tional forces: personal growth and affirmation.

PlayGuru is a set of music exercises based
on an example and response approach. Dialogs
usually start with an example being played and

base the next action upon the response of the
musician. The example and response can also
be played simultaneously, creating a sense of
playing together. Those synchronised exercises
give room to improvisation and exploration.

The way in which PlayGuru aims to keep the
user motivated is based on affirmation when the
exercise is performed according to predefined
objectives.

It will never flag a “wrong note”, as this is
considered highly demotivating. Instead, it re-
sponds by making the exercise slightly easier
when it finds you are struggling with the cur-
rent level, until it gets to a level from which you
can continue growing again.

The most important affirmative motivators
used are:

� increasing playing speed

� extending the phrase

� increasing complexity of the exercise

The current version contains a very basic user
model, which is a starting point for a module
that monitors a user’s achievements and keep
track of their progress, thus supporting their
personal growth.

To perform user tests supporting the re-
search, several exercises are being implemented.
At the time of writing, a versatile sound-domain
guitar tuner with arbitrary tuning is available,
as is an exercise for remembering a melodic
phrase and a riff trainer for practicing licks at
high speed.

Most exercises are developed for the guitar.
A great source of inspiration for guitar practice
is the book by Scott Tennant: [Tennant, 1995]
with a focus on motor skills and automation.

Because all exercises are based on pitch- and
onset-detection in sound signals, adaptation for
other instruments with discrete pitch and a
clear onset should be reasonably straightfor-
ward. For instruments with arbitrary pitch



ranges and smooth transitions, as well as hu-
man voice, some additional provisions may be
necessary.

1.2 Origin of the project

The PlayGuru project started as part of the au-
thor’s Master’s course. While trying to find
ways to improve the effectiveness of practice
routines for the guitar, some research was done
into existing solutions.

Several systems for computer assisted music
training were found and some have been put to
the test. A shortlist is included at the end. One
thing all the encountered solutions have in com-
mon is that they rely heavily on visual interac-
tion. In many cases this implies written score
or tablature, in other cases a game-like environ-
ment in which the user has to act upon events
happening in a graphic scene.

In several cases the author found the visual
information distracting from the music. Thus
the idea arose for a practice tool exclusively
working with sound.

Shortly after that, the foundation Con-
nect2Music 1 came into view. Connect2Music,
founded in 2013, provides information with re-
spect to music practice by visually impaired mu-
sicians.

According to [Mak, 2015], the facilities for
blind music students in The Netherlands are
limited. Even though the situation is improv-
ing, a practice tool which focuses only on the
music itself would be a much wanted addition.

Thus a project was born: to find ways to im-
prove the learning path for beginning and in-
termediate musicians with music as the key el-
ement and primarily addressing blind and visu-
ally impaired people.

The prototype being developed for perform-
ing this research is called PlayGuru. The envi-
sioned end product aims to help and encourage
a music student to perform certain exercises in-
between music classes and is meant to comple-
ment rather than replace regular classes from a
human teacher.

Through the contacts of Connect2Music with
the community, several blind and visually im-
paired musicians and software developers in The
Netherlands and Belgium expressed their inter-
est in this project and offered help to assess and
assist.

1https://www.connect2music.nl

2 Research

To support the research with experiences of end
users, some application prototypes are being de-
veloped. The adaptive exercises used in these
prototypes will briefly be introduced separately.

This chapters discusses the software and the
chosen methods for interacting with the user.

2.1 Software

The framework and all exercises are currently
implemented in C++11. For audio signal anal-
ysis, the Aubio 2 library is used. Exercises are
composed in real time according to musical rules
or taken from existing material like MIDI files
and guitar tablature.

2.2 Dependencies

Development is done on Linux and Raspbian.
Porting to Apple OSX should be relatively easy
but has not been done yet. The most prominent
dependencies, as in libraries, are jackd, aubio,
fftw3 and portmidi. For generating sound, Flu-
idsynth is used. Stand-alone versions use a
Python script to connect the hardware user-
interface to the exercises.

2.3 Practice companion

When playing along with a song on the radio
you will need to adjust to the music you hear,
as it will not wait for you. Playing with other
musicians has entirely different dynamics. Peo-
ple influence each other, try to synchronise, tune
in and reach a common goal: to make the music
sound nice and feel good about it.

When practicing music with a tool like
PlayGuru it would be nice to have a dialog with
the tool, instead of just obeying to its rules.
This is exactly what makes PlayGuru interact
so nicely. It listens to you and adapts, thus be-
having like a practice companion.

How this is achieved is shown with refer-
ence to the software architecture and indica-
tions which parts have been realised and which
are being developed.

2.4 Architecture

The modular design of PlayGuru is shown in fig-
ure 1, with the Exercise Governor as the module
from which every exercise starts.

The Exercise Governor reads a configuration
file containing information about the user, the
type of exercise, parameters defining the course
of the exercise, various composition settings and
possibly other sources like MIDI files.

2https://aubio.org

https://www.connect2music.nl
https://aubio.org


Figure 1: PlayGuru’s software architecture

When the exercise starts, the Composer will
generate a MIDI track, or read it from the spec-
ified file. During the exercise, this generating
may take place again, depending on the type of
exercise and the progress of the musician.

The MIDI track is played by the sound mod-
ule, which also captures the sound that comes
back from the musician or their instrument.

The Assessor contains all the sound process-
ing and assessment logic and reports back to the
Exercise Governor, which calls in the help of the
User Model to decide how to interpret the data
and what to do next.

2.5 Playback and analysis

Playback and analysis run in separate threads,
but share the same time base for relating the
output to the input.

Incoming audio is analysed in real time to de-
tect pitch(es) and onsets, which are used to as-
sess the musician’s play in relation to the given
stimuli. Pitch and onset detection are done us-
ing the Aubio library.

2.6 The Exercise Governor

Every exercise type is currently implemented as
a separate program. The Exercise Governor is
essentially a descriptive name for the main pro-
gram of each exercise, which uses those parts
from the other modules that it needs for a cer-
tain exercise. Currently these are compiled and
linked into the program. With these building
blocks it determines the nature of the exercise.

As an example: to let the musician work
on accurate reproduction of a pre-composed
phrase, the Exercise Governor will ask the Com-
poser to read a MIDI file, call the MIDI play
routine from the Sound module, then let the
Assessor assess the user’s response and consult
the User Model, given the Assessor’s data, for
determining the next step.

For a play-along exercise using generated
melodies, the Exercise Governor uses routines

Figure 2: Note onset absolute time difference

from the same modules, but with a different in-
tention. In this case it would let the Composer
create a new phrase when needed, ask the As-
sessor to run a different type of analysis and
perform concurrent scheduling of playback and
analysis.

2.7 The Assessor

PlayGuru’s exercises generally consist of a play-
and evaluation loop. For some exercises, the
evaluation process is run after the playback iter-
ation, while for others they run simultaneously.

Figure 2 shows the measured timing of a mu-
sician playing along with an example melody.
The time of each matched note is compared to
the time when that note was played in the ex-
ample. In this chart we see that the musician
played slightly “before the beat”.

This absolute timing indicates whether the
musician is able to exactly copy the example,
which can be seen clearly for a melody constist-
ing of only equidistant notes.

More interesting however is relative tim-
ing. This indicates whether the musician
keeps the timing structure of the example in-
tact. In this case we calculate the differ-
ences in spacing of the onsets of successive
notes, either numerically or as an indication of
“smaller/equal/larger” and compare the result
to the structure of the example. In figure 3 this
is shown. Here we can see that the musician
started out with confidence and needed more
time to find the last notes of the phrase. The
example consisted of equidistant notes, which
would result in a chart of zeros and is therefore



Figure 3: Note onset relative time difference

omitted.

2.8 The Composer

The Composer generates musical phrases based
on given rules. The current implementation
uses melodic intervals in a specified range, with
an allowed set of intervals and within a given
scale. The scale is listed as a combination of
tones (T) and semitones (S), as in the examples
in table 1 and can be specified as needed.

T,T,S,T,T,T,S major
T,S,T,T,T,S,T minor
S,S,S,S,S,S,S,S,S,S,S 12-tone

Table 1: Scale examples

2.9 The User Model

At the time of writing, the User Model is partly
implemented.

The part that has been implemented and is
currently tested by end users is the mapping
from analysed properties of the user’s playing
to parameters that are musically meaningful or
significant for the user’s ambitions.

In general this mapping is a linear combina-
tion of those properties. For example, the user’s
melodic accuracy can be expressed as a combi-
nation of hitting the correct notes and the lack
of spurious or unwanted notes.

The weight factors are empirically deter-
mined, as are several parameters in the exer-
cises, such as the number of repetitions before
moving on or the required proficiency for in-
creasing the level of an exercise.

It is here where the assistance of a Machine
Learning algorithm is wanted: to learn which
weight factors and other parameters contribute
to the user’s goals and to optimise these. This
has not been implemented yet and is currently
being studied.

2.10 Melodic similarity

There are several ways to find out the similarity
between the given example and the musician’s
response. In the current research, only the onset
(i.e. start) and pitch of notes are taken into
account. Although timbre, loudness and various
other features are extremely useful, these are
ignored for the time being.

In the exercises where the user is asked to
memorise and copy an example melody, the ac-
complishment of this task is purely based on
hitting the correct notes in the correct order.
The similarity however is also reflected in the
timing. The extent to which the musician keeps
the rhythm of the example intact is a property
that is measured and evaluated.

In the exercises where the musician plays
along with a piece of music, we have much more
freedom in the assessment. In this case, playing
the exact same notes as in the example is not
always necessary. For some exercises it would
suffice to improvise within the scale or play cer-
tain melodic intervals.

In these situations, similarity measures also
allow for more freedom.

A method that is used in an exercise called
“riff trainer”, focused on automation of and cre-
ating variations on a looped phrase, observes
notes in the proximity of example notes and
draws conclusions based on the objectives of the
exercise. This allows for both very strict adher-
ence to the original melody as well as melodic
interval-based variations, depending on the as-
sumed objectives.

Another method compares the Markov chain
of the example with that of the musician’s re-
sponse.

Some inspiration is gained from this book
about melodic similarity: [Walther B. Hewlett,
1998]

3 Personal objectives

Figure 4 shows that an exercise is ‘composed’
and played. The response of the musician is as-
sessed and mapped to temporary skills. Long-
term skills are accumulated in a user model,
which tries to construct an accurate profile of
the musician and their personal objectives.



Figure 4: Machine assisted learning supported
by machine learning

Examples of these objectives are to strive for
faster playing, memorise long melodies or im-
prove timing accuracy. These need to be ex-
pressed as quantifyable properties. Faster play-
ing can be expressed as playing a phrase faster
than before or playing it faster than the given
example, which can be measured.

Likewise, memorising a melody involves the
length of the melody that can accurately be
played at reasonable speed. Obviously, the con-
cepts ‘accurately’ and ‘reasonable’ have to be
quantified.

An indication of accuracy in playing is ob-
tained by measuring the number of spurious
notes, missed notes and timing.

Some approaches for machine learning (ML)
will be investigated. The term “machine learn-
ing” is used here to express that the machine
itself is learning and does not refer to the “ma-
chine assisted learning”, which is the main topic
of this paper. A machine learning algorithm
is thought to be able to achieve the user’s ob-
jectives by adjusting the mapping parameters
that translate measured quantities to short-time
skills and several properties of the exercises.

Depending on the exercise, various factors are
measured, such as matched notes, missed notes,
spurious notes, adherence to the scale, speed
and timing accuracy.

These quantities are mapped to short-term
skills according to table 2.

Apart from these measured data, the exer-
cises also contain configuration parameters that
can be optimised for each user. These are found
in composer settings and the curves used to con-
trol the playing speed and exercise complexity.

Measured quantity Mapped to

timing deltas timing accuracy
missed notes melodic accuracy
spurious notes clutter

Table 2: Mapping measured data to skills

4 Hardware

The starting point for this project is to assess
the sound of an unmodified instrument. In this
section, the current choice of hardware is dis-
cussed.

A brief side-project was undertaken to equip
an acoustic guitar with resistive sensors for
detecting the point where strings are pressed
against the fretboard, but because this doesn’t
look and feel natural, would imply that all users
would need to install a similar modification and
would exclude all instruments other than guitar,
this was discarded.

Because nylon-string acoustic guitar is the
primary instrument for the author as well as
for lots of beginning music students, the deci-
sion was to analyse the sound of the instrument
with a microphone or some kind of transducer.

Using a microphone raises the problem that
the sound produced by PlayGuru interferes with
the sound of the instrument. Source separa-
tion techniques are not considered viable for
this project due to the added complexity and
because we want to be able to play and listen
simultaneously, often to the exact same notes.
This would justify a study of itself.

Requiring the musician to use a headset is
also considered undesirable. So the only option
left seems to use a transducer attached to the
instrument.

After some experimenting with various com-
binations of guitar pickups, sensors, preamps
and audio interfaces, it turned out that a com-
bination of a simple piezo pickup and a cheap
USB audio interface does the job very well.

Successful measurements were done with the
piezo pickup attached to the far end of the neck
of a guitar. It is advised to embed the pickup
into a protective cover to prevent the element
itself and the cable from being exposed to me-
chanical strain and mount it with the piezo’s
metal surface touching the wood of the gui-
tar using a rubber padded clamp from the DIY
store.



Figure 5: Embedded piezo pickup

5 Dissemination

User’s experiences and feedback are of crucial
importance for the development of this tool.
While a browser application or mobile app seem
obvious ways to reach thousands of musicians,
development is currently done on Linux and
Raspbian. This is a deliberate choice, partly in-
spired by the author’s lack of experience with
Webaudio intricacies and the acclaimed large
round-trip audio latency of Android devices, for
which a separate study may be justified.

For a large part however, this choice is sup-
ported by the wish to have an inexpensive
stand-alone, self-reliant, single-purpose device.

A series of stand-alone PlayGuru test devices
are being developed, based on a Raspberry Pi
with a tactile interface meant to be intuitive
to blind people. The idea is to attach a piezo
pickup to the instrument, plug in, select the ex-
ercise and start practicing.

6 Conclusions

Several beginners, intermediate guitar players
and some people with no previous experience
have used PlayGuru’s exercises in various stages
of development. The two most mature exercises
used are copying a melody and playing along
with a melody. In most cases the melodies were
generated in real time based on the aformen-
tioned interval-based rules. In some cases a pre-
composed MIDI file was used.

From the start it was clear that users enjoy
the fact that PlayGuru listens to them and re-
wards “well played” responses with an increase
in speed or making the assignment slightly more
challenging.

Figure 6: Stand-alone device for user tests

Several users mentioned a heightened focus,
meaning that they were very concentrated for
a longer time to keep the interaction going and
the level rising. Mistakes bring down the speed
or level in a suble way and do lead to a slight
disappointment, which in many cases proved to
be an incentive to get back into the ‘flow’ of the
exercise.

The project is work in progress. For a well-
founded opinion on the practical use, a lot more
user tests need to be done but the author’s con-
clusion, based on results so far, is that the ap-
proach is promising.

7 Future Work

At the time of writing, research concentrates
on monophonic exercises with a basic machine
learning algorithm.

For the near future the author has plans to
perform a study with a larger group of users who
can use the system by themselves for a longer
time. This requires creating test setups and/or
porting the software to other platforms.

Monophonic exercises may be the preferred
way to develop several skills, but being able to
play, or play along with, your favourite mu-
sic is much more motivating, particularly for
children. An approach resembling Band-in-a-
Box® is taken, using a multi-channel MIDI file
as input, with the possibility of indicating which
channels will be heard and which channel will be
‘observed’. This requires both polyphonic play
and analysis, which are largely implemented
but currently belong in the Future Work sec-
tion. On the analysis side, a technique based
on chroma vectors [Tzanetakis, 2003] is being
tested.



Machine learning strategies are being stud-
ied but have not yet been implemented. The
assistance of co-developers would be much ap-
preciated.

8 Acknowledgements

I want to thank the HKU for supporting and
facilitating my work and in particular Gerard
van Wolferen, Ciska Vriezenga and Meindert
Mak for their insights and ideas. Gerard van
Wolferen and Pieter Suurmond were of great
help proof-reading and correcting this paper.
Lastly I would like to thank the LAC review
committee for their excellent observations.

9 Other solutions for
computer-assisted music education

� i-maestro

� Bart’s Virtual Music School

� Rocksmith TM

� yousician.com

� bestmusicteacher.com

� onlinemuziekschool.nl

� gitaartabs.nl

References

Meindert Mak. 2015. Connecting music in the
key of life. 1.2

Scott Tennant. 1995. Pumping Nylon, The
Classical Guitarist’s Technique Handbook. Al-
fred Music. 1.1

Ning Hu; Roger B. Dannenberg; George
Tzanetakis. 2003. Polyphonic audio matching
and alignment for music retrieval. 2003 IEEE
Workshop on Applications of Signal Process-
ing to Audio and Acoustics. 7

Eleanor Selfridge-Field Walther B. Hewlett.
1998. Melodic Similarity. The MIT Press.
2.10


