
Open signal processing software platform for hearing aid research
(openMHA)

Tobias Herzke1 and Hendrik Kayser2 and Frasher Loshaj1 and Giso Grimm1,2

and Volker Hohmann1,2

1 HörTech gGmbH and Cluster of Excellence “Hearing4all”,
Marie-Curie-Str. 2, D-26129 Oldenburg, Germany

2 Medizinische Physik and Cluster of Excellence “Hearing4all”
Universität Oldenburg, D-26111 Oldenburg, Germany

info@openmha.org

Abstract

Hearing aids help hearing impaired users partici-
pate in the communication society. Development
and improvement of hearing aid signal processing
algorithms takes place in the industry and in aca-
demic research. With openMHA, we present a de-
velopment and evaluation platform that is able to
execute hearing aid signal processing in real-time
on standard computing hardware with a low delay
between sound input and output. We lay out the
application specific requirements and present how
openMHA meets these and will be helpful in future
research in the field of signal processing for hearing
aids.

Keywords

Hearing aids, audio signal processing, plugin host

1 Introduction

Development of hearing aid signal processing is
widely conducted by hearing aid manufacturers
on proprietary systems that are not accessible
to the research community and that underlie
commercial constraints. Providing open tools
to the hearing aid research community lowers
barriers, accelerates studies with novel acoustic
processing algorithms and facilitates translation
of these advances into widespread use with hear-
ing aids, cochlear implants, and consumer elec-
tronics devices for sub-clinical hearing support.
A software platform for the development and
evaluation of hearing aid algorithms should

• offer a complete set of hearing aid signal
processing reference algorithms that can be
combined with newly developed algorithms
to form a complete hearing aid signal pro-
cessing chain,

• enable researchers to perform offline-
processing as well as real-time signal pro-
cessing with a reliable low delay between
acoustic input and output of less than 10
milliseconds, even when algorithms need
significant processing power,

• provide a library for common signal pro-
cessing tasks and commonly needed ser-
vices in hearing aid signal processing, like
support for acoustic calibration and filter-
banks,

• be able to run on a wide range of hardware,
from high-performance PCs to execute
bleeding-edge algorithms in real-time, to
portable, power-efficient, headless, battery-
powered devices for improved testing capa-
bilities in realistic usage scenarios and field
tests.

Several open-source tools for audio signal pro-
cessing, that can also be used in hearing aid
research, exist:

Octave. Octave is actively used in hearing aid
research for the development of signal process-
ing algorithms for hearing aids. It is a suitable
tool to quickly develop, change and evolve iso-
lated algorithms as long as no real-time audio
processing is required. However, Octave is un-
suitable for executing hearing aid algorithms in
real-time with live input and output sound sig-
nals with low delay.[Eaton et al., 2015]

NumPy/SciPy. Scientific Computing Tools
for Python enable researchers to develop signal
processing algorithms. Technically, this soft-
ware platform is equivalent to octave, but it is
to our knowledge currently not actively used in
hearing aid research.[Jones et al., 2001 ]

Pure Data. Pd is a real-time signal process-
ing platform. It features a graphical program-
ming interface. Pd is actively used mainly by
artists to perform signal processing of music and
other data. Pd can achieve a low delay in real-
time processing. In principle it would be possi-
ble to develop hearing aid signal processing al-
gorithms on Pd, and have these algorithms pro-
cess audio signal in real-time. We are not aware
of any hearing aid research being performed on
the Pd platform and would consider it too la-



borious to implement modern hearing aid algo-
rithms in the graphical programming environ-
ment. Pd can be extended with C, therefore,
hearing aid algorithms could be implemented
for Pd in C or C++.[Puckette, 1996 ]

Plugin hosts. Various plugin hosts for differ-
ent plugin architectures (VST, LADSPA, LV2)
exist, that can load and combine algorithms
in plugins to form complex signal processing
chains. Most hosts can achieve a low delay in
real-time audio processing. Plugins can be writ-
ten in C or C++ using the plugin-architecture
specific SDK. (Using the VST SDK requires
signing a license agreement.) Plugin hosts are
mainly used by sound engineers and also by
artists to process recorded or live music and
other sounds.

Signal processing toolboxes and lan-
guages. A signal processing toolbox like the
Synthesis ToolKit (STK) [Cook and Scavone,
1999] and domain-specific languages (DSL) like
SuperCollider [McCartney, 2002] and Faust [Or-
larey et al., 2009] provide useful signal process-
ing primitives to ease development of audio sig-
nal processing algorithms. We are not aware of
any hearing aid research being performed using
these toolboxes and DSLs.

While the dynamic programming languages
Octave and Python are suitable to develop al-
gorithms and execute them offline, their run-
time environment is not suitable for real-time
processing when low delay is required at high
processing loads. Octave and Python do not
give algorithm implementers the necessary con-
trol to prevent heap memory allocation in the
signal processing path, which can cause unpre-
dictable interruptions in the real-time process-
ing due to priority inversion situations. Pd and
plugin hosts are real-time safe themselves and
allow algorithms to be implemented in C or
C++. The C and C++ programming languages
allow developers sufficient control to implement
algorithms in a real-time safe way. However,
Pd and plugin hosts do not provide commonly
needed services to hearing aid signal processing
developers like calibration or an existing set of
hearing aid algorithms.

The HörTech Master Hearing Aid (MHA)
[Grimm et al., 2006; Grimm et al., 2009a] is
an existing software platform for hearing aid al-
gorithm development and evaluation that meets
all the requirements and has been used by the
hearing aid industry as well as in academic re-

openMHA

plugins IO

audio backend
(Jack, File, TCP)

MHAhostlibMHAToolbox

control applications
(e.g., Octave)

Figure 1: Structure of the openMHA. The
openMHA contains a toolbox library “libMHA-
Toolbox”, a command line host application,
which acts as an openMHA plugin host and pro-
vides the configuration interface, and openMHA
plugins.

search. Until recently, it was only available
as a closed-source commercial product. To en-
able and facilitate collaborative research efforts
and comparative studies in the research commu-
nity, an open-source version of the MHA soft-
ware platform for real-time audio signal process-
ing is now being developed and made available:
the open Master Hearing Aid (openMHA). In
February 2017, a pre-release of the openMHA
has been published on GitHub under an open-
source license (AGPL3) by [HörTech gGmbH
and Universität Oldenburg, 2017]. This pre-
release features an initial set of reference al-
gorithms for hearing aid processing, which will
be expanded in subsequent releases. Thereby,
openMHA provides a growing benchmark for
the development and investigation of novel al-
gorithms on this platform in the future. With
the openMHA we provide an open-source tool
that is tailored to the needs of hearing aid al-
gorithm research which was not available before
as a specialized tool in the open-source domain.

2 Structure

The openMHA can be split into four major com-
ponents (see Figure 1 for an overview):



1. The openMHA command line application

2. Signal processing plugins

3. Audio input-output (IO) plugins

4. The openMHA toolbox library

The openMHA command line application acts
as a plugin host. It can load signal process-
ing plugins as well as audio input-output (IO)
plugins. Additionally, it provides the command
line configuration interface and a TCP/IP based
configuration interface. Several IO plugins ex-
ist: For real-time signal processing, commonly
the “MHAIOJack” plugin is used, which pro-
vides an interface to the Jack Audio Connec-
tion Kit (JACK) [Davis, 2003]. Other IO plu-
gins provide audio file access or TCP/IP-based
processing.

openMHA plugins provide the audio signal
processing capabilities and audio signal han-
dling. Typically, one openMHA plugin imple-
ments one specific algorithm. The complete
virtual hearing aid signal processing can be
achieved by a combination of several openMHA
plugins.

The openMHA toolbox library “libMHATool-
box” provides reusable data structures and sig-
nal processing classes. Examples are class tem-
plates for the implementation of openMHA plu-
gins, and container classes for audio data. Fur-
thermore, several filter classes in temporal or
spectral domain, filter banks, and hearing aid
specific classes are provided in this library.

3 openMHA Platform Services and
Conventions

The openMHA platform offers some services
and conventions to algorithms implemented in
plugins, that make it especially well suited to
develop hearing aid algorithms, while still sup-
porting general-purpose signal processing.

3.1 Audio Signal Domains

As in most other plugin hosts, the audio signal
in the openMHA is processed in audio chunks.
However, plugins are not restricted to propa-
gate audio signal as blocks of audio samples in
the time domain – another option is to propa-
gate the audio signal in the short time Fourier
transform (STFT) domain, i.e. as spectra of
blocks of audio signal, so that not every plugin
has to perform its own STFT analysis and syn-
thesis. Since STFT analysis and re-synthesis of
acceptable audio quality always introduces an

algorithmic delay, sharing STFT data is a ne-
cessity for a hearing aid signal processing plat-
form, because the overall delay of the complete
processing has to be as short as possible.

Similar to some other platforms, the
openMHA allows also arbitrary data to be ex-
changed between plugins through a mechanism
called “algorithm communication variables” or
short “AC vars”. This mechanism is commonly
used to share data such as filter coefficients or
filter states.

3.2 Real-Time Safe Complex
Configuration Changes

Hearing aid algorithms in the openMHA can ex-
port configuration settings that may be changed
by the user at run time. To ensure real-time safe
signal processing, the audio processing will nor-
mally be done in a signal processing thread with
real-time priority, while user interaction with
configuration parameters would be performed
in a configuration thread with normal priority,
so that the audio processing does not get in-
terrupted by configuration tasks. Two types of
problems may occur when the user is changing
parameters in such a setup:

1. The change of a simple parameter exposed
to the user may cause an involved recalcu-
lation of internal runtime parameters that
the algorithm actually uses in processing.
The duration required to perform this re-
calculation may be a significant portion of
(or take even longer than) the time avail-
able to process one block of audio signal.
In hearing aid usage, it is not acceptable to
halt audio processing for the duration that
the recalculation may require.

2. If the user needs to change multiple param-
eters to reach a desired configuration state
of an algorithm from the original configu-
ration state, then it may not be acceptable
that processing is performed while some of
the parameters have already been changed
while others still retain their original val-
ues. It is also not acceptable to interrupt
signal processing until all pending configu-
ration changes have been performed.

The openMHA provides a mechanism in its
toolbox library to enable real-time safe configu-
ration changes in openMHA plugins: Basically,
existing runtime configurations are used in the
processing thread until the work of creating an



updated runtime configuration has been com-
pleted in the configuration thread. In hear-
ing aids, it is more acceptable to continue to
use an outdated configuration for a few more
milliseconds than blocking all processing. The
openMHA toolbox library provides an easy-to-
use mechanism to integrate real-time safe run-
time configuration updates into every plugin.

3.3 Plugins can Themselves Host Other
Plugins

An openMHA plugin can itself act as a plugin
host. This allows to combine analysis and re-
synthesis methods in a single plugin. We call
plugins that can themselves load other plugins
“bridge plugins” in the openMHA. When such a
bridge plugin is then called by the openMHA to
process one block of signal, it will first perform
its analysis, then invoke (as a function call) the
signal processing in the loaded plugin to process
the block of signal in the analysis domain, wait
to receive a processed block of signal in the anal-
ysis domain back from the loaded plugin when
the signal processing function call to that plu-
gin returns, then perform the re-synthesis trans-
form, and finally return the block of processed
signal in the original domain back to the caller
of the bridge plugin.

3.4 Central Calibration

The purpose of hearing aid signal processing is
to enhance the sound for hearing impaired lis-
teners. Hearing impairment generally means
that people suffering from it have increased
hearing thresholds, i.e. soft sounds that are au-
dible for normal hearing listeners may be imper-
ceptible for hearing impaired listeners. To pro-
vide accurate signal enhancement for hearing
impaired people, hearing aid signal processing
algorithms have to be able to determine the ab-
solute physical sound pressure level correspond-
ing to a digital signal given to any openMHA
plugin for processing. Inside the openMHA,
we achieve this with the following convention:
The single-precision floating point time-domain
sound signal samples, that are processed inside
the openMHA plugins in blocks of short du-
rations, have the physical pressure unit Pascal
(1Pa = 1N/m2). With this convention in place,
all plugins can determine the absolute physi-
cal sound pressure level from the sound sam-
ples that they process. A derived convention is
employed in the spectral domain for STFT sig-
nals. Due to the dependency of the calibration
on the hardware used, it is the responsibility of

the user of the openMHA to perform calibration
measurements and adapt the openMHA settings
to make sure that this calibration convention
is met. We provide the plugin transducers (cf.
section 4.1) which can be configured to perform
the necessary signal adjustments in most situa-
tions.

4 February 2017 Pre-Release

In February 2017, HörTech and Universität
Oldenburg published a pre-release of the
openMHA on GitHub under an open-source li-
cense (AGPL3). This pre-release contains the
openMHA command line application, the tool-
box library “libMHAToolbox”, an initial set
of openMHA plugins and openMHA sound in-
put/output (IO) libraries, and example configu-
rations. The initial set of plugins and sound IO
libraries was selected so that a basic research
hearing aid configuration can be realized with
the contained plugins, and users could process
both, live sounds via JACK as well as sound
from and to files. The basic hearing aid algo-
rithms present in the pre-release include

• an adaptive differential microphone al-
gorithm that suppresses interfering noise
from the rear hemisphere (cf. section 4.3),

• a binaural coherence filter that provides
feedback suppression and dereverberation
(cf. section 4.5), and

• a multi-band dynamic range compression
algorithm that restores audibility of sounds
for the hearing impaired user (cf. section
4.7).

Apart from the plugins that implement just
these algorithms, additional supporting plug-
ins are contained in the pre-release that are re-
quired to form a complete hearing aid imple-
mentation. The contained plugins are briefly
described in the following subsections.

For real-time hearing aid processing, an
input-output delay below 10 ms is required.
This ensures that

• the hearing-impaired user is not confused
by asynchrony between lip movements of
a conversation partner and the perceived
sound,

• no echo-effects are audible if the direct
sound can also be perceived by the hear-
ing aid user, and



• fewer frequencies are available for possibly
annoying acoustic feedback loops [Grimm
et al., 2009a].

The example configuration that combines all
three example algorithms mentioned here shows
an algorithmic delay of 4.4 ms. On top of this al-
gorithmic delay, input and output of the sound
through a sound card causes additional delay in
the range of two to three block durations de-
pending on the hardware in use. The example
configuration uses a block size of 64 samples at
44100 Hz sampling rate. We have found, that
e.g. with the RME Multiface II sound card and
the snd-hdsp alsa driver used by JACK, this will
add 4.4 ms delay between acoustic input and
output on a Linux system with a low-latency
kernel and real-time priorities set up for JACK
and the alsa sound driver.

This results in an overall delay of 8.8 ms of
the example configuration containing the plu-
gins described in the following in the order of
their processing.

4.1 The transducers Plugin

A device-dependent calibration is required for
plugins to be able to deduce the physical sig-
nal level that is present at the hearing aid in-
put. When connecting a microphone to a sound
card and using that sound card to feed sound
samples to the openMHA, these sound samples
do not automatically follow the openMHA level
convention outlined in section 3.4. The same
is true when using sound files instead of sound
cards for input and output. Different micro-
phones have different sensitivities. Sound cards
have adjustable amplification settings. Sound
files may have been normalized before they have
been saved to disk. To be able to implement
the openMHA level convention, i.e., that the
numeric value of time-domain sound samples in
the openMHA should reflect their sound pres-
sure amplitude in Pascal, we need to be able
to adjust for arbitrary physical level to digital
level mappings in the openMHA. This is done
with the help of the plugin transducers, which
is the only plugin that must not rely on this
convention, because it is the one plugin that
has to make sure that all other plugins can rely
on this convention. For this reason, transduc-
ers is usually loaded as the first plugin into
the openMHA, and will itself (i.e. as a bridge
plugin, cf. section 3.3) load another openMHA
plugin into the openMHA process. This other
plugin receives the calibrated input signal from

transducers, and it sends its processed but still
calibrated output signal back to the transducers
plugin to adjust for the physical outputs. trans-
ducers provides filters and gain adjustments to
ensure calibration of inputs and outputs. Typi-
cal output calibration values are in the order of
110 dB SPL of a full-scale signal.

4.2 The mhachain Plugin

An mhachain plugin can itself load several other
plugins in a configurable order, where each plu-
gin processes the output signal of the previous
plugin.

4.3 The Adaptive Differential
Microphone (adm) Plugin

Reduced audibility of soft sounds is not the only
problem that hearing impaired listeners face
when communicating. Another commonly ex-
perienced problem is a reduced intelligibility of
speech in noisy environments, even if the speech
is loud enough to be perceived. Hearing aids
therefore regularly employ signal processing al-
gorithms to enhance the signal-to-noise ratio
of speech in noisy environments. In this con-
text assumptions about target and noise sources
play an important role as well as robustness
and generalization capabilities of the method
used. Adaptive differential microphones (ADM,
[Elko and Pong, 1995]) aim at the preserva-
tion of a target signal while suppressing back-
ground noise. For this purpose, two general
assumptions are made: the target is assumed
to be present in the frontal hemisphere of a
listener, while noise occurs in the rear hemi-
sphere. ADMs work for pairs of omnidirec-
tional microphones separated by a small dis-
tance, and combine a two-channel input to a
single-channel output signal by adding up de-
layed and weighted versions of the input as
shown in Figure 2. In a binaural setting two
independent, bilateral ADMs are realized, each
using a two-microphone pair located in the a
hearing aid device on one ear.

4.4 The overlapadd Plugin

overlapadd is one of the openMHA plugins that
perform conversion between time domain and
spectral domain as a service for algorithms that
process a series of short time Fourier transform
(STFT) signals. Thereby, not every openMHA
plugin that processes spectral signal has to per-
form its own spectral analysis.

overlapadd is a bridge plugin (cf. sec-
tion 3.3) and performs both, the forward and



front

back

out

-

-

-

weight

T

T

Figure 2: Adaptive differential microphone sig-
nal flowchart. The input of the front and back
microphone is combined to a single-channel out-
put after applying a delay T and a weighting.

the backward transform, and can load another
openMHA plugin which analyses and modi-
fies the signal while in the spectral domain.
The plugin performs the standard process of
collecting the input signal, windowing, zero-
padding, fast Fourier transform, inverse fast
Fourier transform, additional windowing, and
overlap-add time signal output. It can be used
in standard overlap-add (OLA) and weighted
overlap-add (WOLA) contexts.

4.5 The Binaural coherence Filter
Plugin

An important issue in hearing aid processing
is the reduction of feedback that can occur be-
tween the hearing aid receivers (outputs) and
the closely located inputs (microphones). At
high output levels a sound loop can emerge,
causing annoying, self-sustaining beep tones.

Binaural coherence filtering, i.e., coherence-
based gain control is applied to reduce this ef-
fect and enable higher gain levels of the hearing
device [Grimm et al., 2009b].

Figure 3 shows that the binaural coherence is
measured between the left and the right input
signals to the hearing aids and used to derive
frequency-dependent gains.

Coherence filtering also contributes to noise
and reverberation reduction, as diffuse, inco-
herent background sounds are also reduced.
A combination the binaural coherence filtering
with preceding bilateral ADMs was shown to
be beneficial, i.e., increased speech intelligibility
with a binaural hearing aid setup [Baumgärtel
et al., 2015].

4.6 The fftfilterbank Plugin

In the hearing impaired, the hearing loss gener-
ally varies with frequency. To restore audibility
in hearing impaired listeners with amplification
and compression in hearing aid signal process-
ing, it is therefore common practice to amplify

Lin
STFT

Rin
coherence gain iSTFT

Lout

Rout

Figure 3: Coherence filter signal flowchart. Bin-
aural coherence-based gain control is applied to
the left and the right input channel in different
frequency bands in the STFT domain.

filter 
 bank

gain 
 control resynthesis out

level 
 meter

in

Figure 4: Dynamic compression signal
flowchart. The input is split into frequency
bands by a filter-bank. Before re-synthesis, an
input-level dependent gain rule is applied.

and compress the signal differently in different
frequency bands, and let the time-varying input
level in the different frequency bands control
the gain selection. The fftfilterbank plugin re-
ceives broadband spectra for each audio channel
and divides the incoming spectra into multiple
narrower frequency bands for processing by the
following openMHA algorithms. The fftfilter-
bank provides flexibility for filter-bank design.
The output frequency bands may overlap or not,
with variable degrees of overlap, with customiz-
able filter shapes and different frequency scales
to specify the edge or center frequencies of the
filters.

4.7 Hearing Loss Compensation (dc)

The dc plugin applies Multi-band dynamic
range compression [Grimm et al., 2015] to the
signal. This operation serves two important
aspects in a hearing aid: The hearing loss is
compensated by defining gain rules between in-
put and output level. Specific gain rules are
also used to compensate recruitment effects that
often comes along with a hearing loss, i.e., a
decreased range between the percept of a soft
sound and the loudest sound with a still com-
fortable level. To compensate for this effect, soft
input sounds are usually amplified with higher
gains than loud sounds. The dc plugin allows to
specify a gain-matrix with different gains for dif-
ferent frequencies and input sound levels. Input
sound levels in hearing aid frequency bands are
commonly measured with attack-release level
filters, the time constants of which can be freely
configured in the dc plugin. Figure 4 shows the



signal flow for dynamic compression with the
dc plugin. The dc plugin also allows to config-
ure binaural and inter-frequency interactions of
gain derivation.

4.8 The combinechannels Plugin

Because the fftfilterbank splits broadband sig-
nals into frequency bands for processing by the
dc plugin, these frequency bands have to be re-
combined to broadband channels again, after
dc has processed them. This is done in the
combinechannels plugin. Of course, the fftfil-
terbank and combinechannels plugins could be
combined into a single bridge plugin (cf. sec-
tion 3.3). This would generally be a better
implementation choice. It is not done here to
showcase the flexibility of the openMHA plat-
form: It is also possible to have analysis and re-
synthesis of some transform as separate plugins,
and to propagate the signal from one plugin to
the next inside a single mhachain plugin while
the domain changes from one plugin to the next
(here: few broadband channels vs many narrow-
band channels).

5 Software

openMHA is a command line application with
no graphical user interface (GUI) of its own.
openMHA can be configured with command line
parameters, configuration files, interactively
over a network connection, or by a combina-
tion of all three methods. The same text-based
configuration language is used in all three meth-
ods. Special-purpose GUIs can be produced to
control the openMHA over the network connec-
tion. Such GUIs can be produced in any pro-
gramming language or framework that is able to
connect to the openMHA over a TCP network
connection. Some special-purpose GUIs exist
for the closed-source MHA that also work with
the openMHA, but are not yet part of the first
open-source pre-release. GUIs will be added in
later releases of the openMHA.

5.1 Configuration Interface

The openMHA application itself and also its
plugins are controlled through a simple, text-
based configuration language. The language
allows hierarchical configuration similar to the
concept of Octave and Matlab structures. The
configuration language enables variable assign-
ments, queries, and loading and saving of con-
figuration files. Variables of different types (in-
tegers, floating point and complex numbers,

strings) and dimensions (scalars, vectors, ma-
trices) are supported. For more details, please
refer to [Grimm et al., 2006].

5.2 Plugin Development

New plugins can be developed for the openMHA
by implementing a C++ class derived from a
generic base class, implementing the methods
and compiling it to a shared object. Together
with other helper classes provided by the MHA-
Toolbox library, out-of-the box support for ex-
porting variables to the configuration interface
(cf. section 5.1) and for thread safe configura-
tion updates (cf. section 3.2) is available.

Simple plugins will usually output the signal
in the same domain (spectrum or waveform) as
the input domain. It is also possible to im-
plement domain transformations (from the time
domain to spectrum or vice versa) inside a plu-
gin, as well as change the number of audio chan-
nels, and even the number of audio samples
per block and the sampling rate (e.g. for re-
sampling).

A detailed manual for plugin development
and implementation will be provided with a
near-future release.

6 Conclusions

The openMHA provides the means for sustain-
able research on and development of hearing aid
processing algorithms and assistive hearing sys-
tems. The software is further developed in the
project ”Open community platform for hearing
aid algorithm research”, additionally, updates
based on the feedback of the research commu-
nity will be conducted. Future work will ex-
tend the openMHA in several directions: The
set of reference algorithms will be expanded and
experimental algorithms will be included. Ad-
ditional hardware and operation systems will
be included, i.e., real-time runtime support for
Beaglebone Black ARM and similar platforms,
as well as support for Windows operations sys-
tems. Increased usability on different user levels
is achieved by the preparation of a GUI for the
pure application of the openMHA, e.g., in the
context of audiological measurements, availabil-
ity of reference manuals for the configuration as
well as the implementation of plugins for real-
ization and implementation of own algorithms
and methods and their evaluation.

The openMHA is intended to serve as a plat-
form for extensive research and evaluations by
the community. A pre-release of the software in



its current version including example configura-
tion files as described here can be downloaded
via http://www.openmha.org.

7 Acknowledgments

The project ”Open community platform for
hearing aid algorithm research” is funded by
the National Institutes of Health (NIH Grant
1R01DC015429-01).

References

Regina M. Baumgärtel, Martin Krawczyk-
Becker, Daniel Marquardt, Christoph Völker,
Hongmei Hu, Tobias Herzke, Graham Cole-
man, Kamil Adiloglu, Stephan M. A.
Ernst, Timo Gerkmann, Simon Doclo, Birger
Kollmeier, Volker Hohmann, and Math-
ias Dietz. 2015. Comparing Binaural Pre-
processing Strategies I: Instrumental Eval-
uation. Trends in Hearing, 19:article No.
2331216515617916.

Perry R Cook and Gary P Scavone. 1999. The
synthesis toolkit (stk). In ICMC.

Paul Davis. 2003. Jack audio connection kit.
http://jackaudio.org/.

John W. Eaton, David Bateman, Søren
Hauberg, and Rik Wehbring. 2015. GNU
Octave version 4.0.0 manual: a high-level
interactive language for numerical com-
putations. http://www.gnu.org/software/
octave/doc/interpreter.

G. W. Elko and Anh-Tho Nguyen Pong. 1995.
A Simple Adaptive First-order Differential
Microphone. In Proceedings of 1995 Work-
shop on Applications of Signal Processing to
Audio and Accoustics, pages 169–172.

Giso Grimm, Tobias Herzke, Daniel Berg,
and Volker Hohmann. 2006. The Master
Hearing Aid: a PC-based Platform for Al-
gorithm Development and Evaluation. Acta
acustica united with Acustica, 92:618–628.

Giso Grimm, Tobias Herzke, and Volker
Hohmann. 2009a. Application of Linux Au-
dio in Hearing Aid Research. In Linux Audio
Conference 2009.

Giso Grimm, Volker Hohmann, and Birger
Kollmeier. 2009b. Increase and Subjective
Evaluation of Feedback Stability in Hear-
ing Aids by a Binaural Coherence-based
Noise Reduction Scheme. IEEE Transactions
on Audio, Speech, and Language Processing,
17(7):1408–1419.

Giso Grimm, Tobias Herzke, Stephan Ewert,
and Volker Hohmann. 2015. Implementation
and Evaluation of an Experimental Hearing
Aid Dynamic Range Compressor Gain Pre-
scription. In DAGA 2015, pages 996–999.

HörTech gGmbH and Universität Oldenburg.
2017. openMHA web site on GitHub. http:
//www.openmha.org/.

Eric Jones, Travis Oliphant, Pearu Peterson,
et al. 2001–. SciPy: Open source scientific
tools for Python. http://www.scipy.org/.

James McCartney. 2002. Rethinking the com-
puter music language: Supercollider. Com-
puter Music Journal, 26(4):61–68.

Yann Orlarey, Dominique Fober, and
Stéphane Letz. 2009. Faust: an efficient
functional approach to dsp programming.
New Computational Paradigms for Computer
Music, 290.

Miller Puckette. 1996–. Pure data. https:
//puredata.info/.

http://www.openmha.org
http://www.gnu.org/software/octave/doc/interpreter
http://www.gnu.org/software/octave/doc/interpreter
http://www.openmha.org/
http://www.openmha.org/
http://www.scipy.org/
https://puredata.info/
https://puredata.info/

	Introduction
	Structure
	openMHA Platform Services and Conventions
	Audio Signal Domains
	Real-Time Safe Complex Configuration Changes
	Plugins can Themselves Host Other Plugins
	Central Calibration

	February 2017 Pre-Release
	The transducers Plugin
	The mhachain Plugin
	The Adaptive Differential Microphone (adm) Plugin
	The overlapadd Plugin
	The Binaural coherence Filter Plugin
	The fftfilterbank Plugin
	Hearing Loss Compensation (dc)
	The combinechannels Plugin

	Software
	Configuration Interface
	Plugin Development

	Conclusions
	Acknowledgments

