OpenAV Ctlra:
A Library for Tight Integration of Controllers

Harry VAN HAAREN
OpenAV
Bohatch,

Mountshannon,
Co Clare, Ireland.
harryhaaren@gmail.com

Abstract

Ctlra is a library designed to encourage integra-
tion of hardware and software. The library ab-
stracts events from the hardware controller, emitting
generic events which can be mapped to functionality
exposed by the software.

The generic events provide a powerful method
to allow developers and users integrate hardware
and software, however a good development workflow
is vital to users while tailoring mappings to their
unique needs.

This paper proposes an implementation to enable
a fast scripting-like development workflow utilizing
on-the-fly recompilation of C code for integrating
hardware and software in the Ctlra environment.

Keywords

Controllers, Hardware, Software, Integration.

1 Introduction

Ctlra aims to enable easy integration between
DAWSs and controllers. At OpenAV we believe
that enabling hardware controllers to be 1st
class citizens in controlling music software will
provide the best on-stage workflow possible.

Ctlra has been developed due to lack of a
simple C library that affords interacting with a
range of controllers in a generic but direct way,
that enables tight integration.

1.1 Existing Projects

Although many projects exist to enable hard-
ware access, very few aim to provide a generic
interface for applications to use.

Projects such as maschine.rs[Light, 2016],
HDJD[Pickett, 2017], OpenKinect[OpenKinect-
Community, 2017] and CWiid[Smith, 2007] all
enable hardware access, however they each ex-
pose a a unique API to the application, resulting
in the need to explicitly support each controller.

The o.io[Freed, 2014] project aims to unify
communications for various types of interac-
tion using an OSC API, which is similar to
the generic events concept. Discoverability and

familiarity with the implementation presented
possible issues, so Ctlra is designed as a simple
C API that will be instantly familiar to seasoned
developers.

Hence, Ctlra is implemented as a C library
that provides generic events to the application,
regardless of the hardware in use.

1.2 Modern Controllers

Each year there are new, more powerful and
complex hardware controllers, often with large
numbers of input controls, and lots of feedback
using LEDs etc. The latest generations have
seen an uptake in high-resolution screens built
into the hardware.

The capabilities of these devices require an
equally powerful method to control the hard-
ware, or risk not utilizing them to the full po-
tential. As such, any library to interface with
these controllers should afford handling these
complex and powerful controller devices easily.

1.3 Why a Controller library?

Although every application could implement its
own device-handling mechanism, there are sig-
nificant downsides to this approach.

Firstly, a developer will not have access to
all controllers that are available, so only a sub-
set, of the controllers will have tight integration
with their software. As an end result, the users
controller may not be directly supported by the
application.

Secondly, duplication of effort is significant,
both in the development and testing of the con-
troller support. This is particularly true if a
device supports multiple layers of controls.

Thirdly, advanced controller support features
like hotplug and supporting multiple devices of
the same type must also be tested - requir-
ing both access to multiple hardware units and
time.

The Ctlra library shares the effort required to
develop support for these powerful devices, pro-

viding users and developers with an easy API
to communicate with the hardware.

1.4 Tight integration

The terms “tight integration” or “deep integra-
tion” are often used to describe hardware and
software that collaborate closely together, per-
haps they are even specifically designed to suite
one other.

Tight integration leads to better workflows
for on-stage usage of software, as it allows oper-
ations from inside the software to be controlled
by the hardware device and appropriate feed-
back returned to the user.

The advantage of tight integration is pro-
viding a more powerful way of integrating the
physical device and the software. As an exam-
ple, many DAWSs support MIDI Control Change
(CC) messages, and allow changing a parame-
ter with it. Although such a 1:1 mapping is
useful, most workflows require more flexibility.
For example, each physical control could effect
a number of parameters with weighting applied
to provide a more dynamic performance.

1.5 Controller Mapping

The Ctlra library allows mappings to be cre-
ated between physical controls and the target
software. DAWSs could expose this functional-
ity for technical users - giving them full control
over the software.

Given the variation in live-performances and
on-stage workflows, there is no ideal mapping
from a device to the application - it depends
on the user. As a result, OpenAV is of the
opinion that enabling users to create custom
mappings from controllers to software using a
generic event as a medium to do so is the best
approach.

1.6 Scripting APIs

Various audio applications provide APIs to al-
low users script functionality for their con-
troller. Enabling users to script themselves re-
quires technical skill from the user, however it
seems like there is no viable alternative.

The solution proposed in section 4 also pro-
poses “crowd-sourcing” the effort in writing
controller mappings to the users themselves, as
they have access to the physical device and have
knowledge of their ideal workflow.

Examples of audio applications that pro-
vide scripting APIs are Ardour[Davis, 2017],
Mixxx[Mixxx, 2017] and Bitwig Studio[Bitwig,
2017]. Although Ableton Live[Ableton, 2017]

doesn’t officially expose a scripting API, the are
members of the community that have investi-
gated and successfully written scripts to control
it[Petrov, 2017].

A brief review shows high-level scripting lan-
guages are favoured over compiled languages.
Mixxx and Bitwig are both using JavaScript,
while Ableton Live uses Python, and Ardour
uses the Lua language.

These solutions are all valid and workable,
however they do require that the application
developer to exposes a binding API to glue the
scripting API to the core of the application.

With the exception of Lua, none of the above
scripting languages provide real-time safety un-
less very carefully programmed - which should
not be expected of user’s scripts.

OpenAV feels that providing controller sup-
port in the native language of the application
ensures that all operations that the application
is capable of are also mappable to a controller.
Other advantages of having the controller map-
pings in the native language of the application is
that they can be compiled into the application
itself.

2 Ctlra Implementation

This section details the design decisions made
during the implementation of the Ctlra library.
The core concepts like the context, device and
events are introduced.

2.1 Ctlra Context

The main part of the Ctlra library is the con-
text, it contains all the state of that particular
instance of the Ctlra library. This state is repre-
sented by a ctlra_t in the code. Using a state
structure ensures that Ctlra is usable from in-
side a plugin, for example an LV2 plugin.

Devices and metadata used by Ctlra are
stored internally in the ctlra_t. The end goal is
to enable multiple ctlra_t instances to exist in
the same process without interfering with one-
another. This is more difficult than it sounds
as not all backends provide support for context
style usage.

2.2 Generic Events

Ctlra is built around the concept of a generic
event,. The generic event is a C struc-
ture ctlra event_t which may contain any
of the available event types. The avail-
able event types include all common hardware
controller interaction types, such as BUTTON,
ENCODER, SLIDER and GRID. The events are

prefixed by CTLRA_EVENT_, so BUTTON becomes
CTLRA_EVENT_BUTTON.

Once the type of the event is established,
the contents of the event can be decoded. The
generic event has a union around all events, so
an event must represent one and only one type
of event. It is expected that the application will
use a switch() statement to decode the event
types, and process them further.

The power of generic events is shown by the
examples/daemon sample application, which
translates any Ctlra supported device into an
ALSA MIDI transmitting device.

2.2.1 Button

The button event represents physical buttons
on a hardware device. It contains two variables,
id and pressed. The button id is guaranteed
to be a unique identifier for this device, based
from 0, and counting to the maximum number
of buttons. The pressed variable is a boolean
value set high when the button is pressed by the
user.

2.2.2 Slider

The slider event represents physical controls
that have a range of values, but the interaction
is of limited range, eg: faders on a mixing desk.
The slider has and id as a unique identifier for
the slider, and floating-point value that repre-
sents the position of the control. The value
variable range is normalized as a linear value
from 0.f to 1.f to allow generic usage of the
event.

2.2.3 Encoder

The encoder represents an endless rotary con-
trol on a hardware device. There are two
types of encoders, which we will refer to as
“stepped” and “continuous”. Stepped controls
have notches providing distinct steps of move-
ment, while the continuous type is smooth and
provides no physical feedback during rotation.

The stepped controls notify the appli-
cation for each notch moved by setting
the ENCODER_FLAG_INT, and the delta change
is available from delta. Similarly the
ENCODER_FLAG_FLOAT tells the application to
read the delta_float value, and interpret the
value as a continuous control.

2.2.4 Grid

The grid represents a set of controls that are log-
ically grouped together, eg: the squares of the
Push2 controller. The grid event type contains
multiple variables: id, flags, pos, pressure
and pressed.

The id identifies the grid number, allowing
controllers with more than one grid to distin-
guish between them. The flags allows the
event to identify which values are valid in this
event. Currently two flags are defined, BUTTON
and PRESSURE, there are 14 bits remaining for
future expansion.

If the flag GRID_FLAG_BUTTON is set, the
pressed variable is valid to read, and repre-
sents if the button is currently pressed or not.
The BUTTON flag should only be set in the de-
vice backend if the state of the grid-square has
changed, this eases handling events in the appli-
cation. When GRID_FLAG _PRESSURE is set, the
floating-point pressure variable may be read,
The pressure value is normalized to the range
0.f to 1.0f.

2.3 Devices

In Ctlra, any physical controller is represented
internally in by a ctlra_dev_t. Devices do not
appear available to the application directly, but
instead operations on the device are performed
through the ctlra t context. There is an ab-
stracted representation of a device at the API
level, which the application has access to in the
event_handle() callback.

The reason that the device is not exposed
to the application directly is that ownership
and cleanup of resources becomes blurred when
hotplug functionality is introduced. Using the
ctlra_t context as a proxy for multiple devices
not only simplifies the application handling of
controllers, but actually helps define stronger
memory ownership rules too. See section 2.4
for hotplug implementation details.

2.3.1 Device Backends

A device backend is how the software driver con-
nects to the physical device.

The implementation of the driver calls a
read() function, which indicates the driver
wishes to receive data. The backend library
will send an async read to the physical device,
and return immediately. Upon completion of
the transaction a callback in the driver is called
which decodes the newly received data, and can
emit events to the application if required. To
write data to the device, a write () is provided.

Note that a single device driver may open
multiple backends, or utilize multiple connec-
tions of the same backend in order to fully sup-
port the capabilities of the hardware. An ex-
ample could be a USB controller that exposes
both a USB interrupt endpoint for buttons and

a USB bulk endpoint for sending data to a high-
resolution screen.

Note that more backends can be added to
support more devices if it is required in future.

2.4 Hotplug Implementation

Implementing a hotplug feature is difficult; it
requires handling device additions and removals
in the library itself, as well as a method to com-
municate any changes of environment with the
application.

As Ctlra is a new library built from the
ground up, hotplug was a consideration from
the start as a required feature. As such, the API
has been influenced by and designed for hotplug
capabilities. The concept of a ctlra_t context
that contains devices was introduced to allow
transparent adding of devices without blurring
memory ownership rules.

Hotplug of USB devices is enabled by
LibUSB, which provides a hotplug callback,
when a hotplug callback is registered and
hotplug is supported on the platform. The
USB hotplug callback is utilized to call the
accept_device() callback in the application,
providing details of the controller. The info pro-
vided allows the application to present the user
with a choice of accepting or rejecting the con-
troller, and if accepted, it will be added to the
ctlra_t context.

3 Application Usage of Ctlra

This section will introduce the reader to the
steps required to integrate Ctlra into an applica-
tion. Refer to the examples/simple/simple.c
sample to see a minimal program in action.
The following steps summarize Ctlra usage:

1. ctlra_create()
2. ctlra probe()
e Accept controller in callback

3. ctlra_iter()
e Handle events in callback

4. ctlra_exit()

This creates a single ctlra_t context, probes
and accepts any supported controller. The ac-
cepted controllers are connected to the particu-
lar context that it was probed from.

Calling ctlra_iter() causes the event to be
polled and the application is given a chance
to send feedback to the device. Finally,
ctlra exit () releases any resources and grace-
fully closes the context.

3.1 Interaction

The main interaction between Ctlra and the
application happens in two functions. Events
from the device are handled in the applica-
tion provided event_handle() function, while
feedback can be sent to a device from the
feedback _func().

These functions are callback functions, and
they are invoked for each device when the ap-
plication calls ctlra_iter().

To understand the events passed between the
device and the application, please review the
generic events (Section 2.2), and browse the
examples/ directory.

3.2 Controller’s View of State

Each application has its own way of representing
its state. Similarly, each controller has its own
capabilities in terms of controls and feedback to
the user. Given the specific application state
and capabilities of the hardware, it is useful to
create a struct specifically for storing the view
that the controller has of the application.

Note that the controller view should be
tracked per instance of the controller, as users
may have multiple identical controllers. This
controller’s instance of the struct is very useful
for remapping the controls to provide an alter-
nate map when a “shift” key is held down. As
the struct depends on the application and de-
vice, this problem can not be solved elegantly
at the library layer.

Ctlra provides a userdata pointer for each in-
stance which can be purposed for to point to the
state struct. If the application’s state must be
accessed from the state-struct, a “back-pointer”
to the application elegantly provides that.

The memory for the state struct can be al-
located in the accept_device() callback from
Ctlra, and the memory can be released in
when the device is disconnected using the
remove_device() callback.

4 Device Scripting in C

This section describes a solution to providing
a fast and interactive development workflow for
scripting mappings between software and device
using the C language.

C is typically a compiled and static language,
not one that comes to mind when discussing dy-
namic and scripting type workflows. Although
generally accurate, C can be used as a dynamic
language with certain compromises. The follow-
ing section details how applications can imple-

ment a C scripting workflow for users to quickly
develop “Ctlra scripts”.

4.1 Dynamic Compilation

Dynamically compiling C at runtime can be
achieved by bundling a small, lightweight C
compiler with your application. This may sound
a little crazy, but there are very small and
lightweight C compilers available designed for
this type of usage. The “Tiny C Compiler”,
or TCC|Bellard, 2017] project is used to enable
compiling C code at runtime of the application.

Please note that the security of dynamically
compiling code is not being considered here as
the goal is to enable user-scripted controller
mappings for musical performance. If security
is a concern, the reader is encouraged to find a
different solution.

4.2 TCC and Function Pointers

The TCC API has various functions to create a
compilation context, set includes, and add files
for compilation. Once initialized, TCC takes an
ordinary .c source file, and compiles it.

When compilations completes successfully,
TCC allows requesting functions from the script
by name, returning a function pointer.

The returned function pointer may be called
by the host application, forming the method of
communicating with the compiled script.

4.3 The Illusion of Scripting

To provide the illusion that the code is a script,
the application can check the modified time of
a script file, and recompile the file if needed.
By swapping in the new function pointers, the
update code runs. The old program can then
be freed, cleaning up the resources that were
consumed by the now outdated script.

The examples/tcc_scripting/ directory
contains a minimal example showing how the
event handling for any Ctlra supported device
can be dynamically scripted.

Providing this workflow requires some extra
integration from the application, however the
time pays off easily in developer time saved
when time save in scripting support for each
controller is considered.

4.4 C and C++ APIs

Note that TCC is a C compiler only - explicitly
not a C++ compiler. This has some impact on
how scripts can interact with applications, as
many large open-source audio projects are writ-
ten in C++. The solution is to provide wrapper
functions to C, if the hosts language is C++.

Often real-time software uses message-
passing in plain C structs through ringbuffers.
This is a good way to communicate between dy-
namically compiled scripts and the host, as it
provides a native C API, as well as a method to
achieve thread-safe message passing.

5 Case Study: Ctlra and Mixxx

This section briefly describes the work per-
formed to integrate Ctlra with the open-source
Mixxx DJ software. It is presented here to
showcase how to integrate the Ctlra library in
an existing project.

5.1 Implementation

This section details the steps taken to integrate
the Ctlra library in Mixxx to test Ctlra in the
real-world.

5.1.1 Class Structure

Mixxx has a very object oriented design, utiliz-
ing C++ classes to abstract behaviour of control
devices and managers of those control devices.
The ControllerManager class aggregates the
different types of ControllerEnumerator
classes, which in turn add Controller class in-
stances to the list of active controllers. Ctlra has
been integrated as a ControllerEnumerator
sub-class for this proof-of-concept implemen-
tation, really it should be integrated at the
ControllerManager level.

5.1.2 Threading in the Mixxx Engine

The Mixxx engine currently creates many
threads. This design is supported by the use of
an “atomic database” of values (see next Section
5.1.3). Given this design, the Ctlra integration
is done by spawning a Ctlra handling thread,
which performs any polling and interacting with
Ctlra supported devices.

5.1.3 Communicating with the Engine

The Mixxx engine is composed of values, which
can be controlled from any thread anywhere
in the code. These values are represented in
the code by ControlObject and ControlProxy
classes. A ControlObject is the equivalent to
owning a value, while the ControlProxy allows
atomic access to update the value. Lookup of
these values is performed using “group” and
“key” strings. The strings are constant allowing
Ctlra and the Mixxx engine to understand the
meaning of each value represented by a partic-
ular ControlProxy.

5.1.4 Mixxx’s C++ API

An issue arises due to Mixxx having a Control-
Proxy being a C++ class which is not possible
to access from a TCC compiled script (refer to
C and C++ APIs, Section 4.4).

The solution is to create a C wrapper
function, which simply provides a C API to
the desired C++4 function to be called on a
ControlProxy instance. This provides the
power of the Mixxx engine to the dynamically
compiled script code:

void mixxx_config_key_set (
consl char xgroup,
const char xkey,
float value);

5.2 Mixxx and Hotplug

Since Ctlra hides the hotplug functionality
from the application due to the design of the
accept_device() callback, Mixxx supports on-
the-fly plug-in and plug-out transparently.
This is achieved by the Ctlra library having
its own thread to poll events (see Section 5.1.2),
and handling the connect or disconnect events.
The Mixxx application code did not have to be
modified to support hotplugging of controllers
in any way (beyond adding basic Cltra support).

5.3 Scripting Controller Support

With the Ctlra library integrated in Mixxx,
users are now able to script the tight integration
of the Ctlra supported hardware and Mixxx.
The next sections demonstrate simple mappings
from a device to Mixxx and vice-versa.

5.3.1 Event Input to Mixxx

When a user presses a physical control on a de-
vice, the action is presented to the application
as an event. The user can map these events to
the application in a variety of ways, in order to
suit their own requirements on how they wish
to control the software application.

For example, the following snippet shows how
we can bind slider ID 10 to channel 1 volume in
Mixxx (note the usage of the C function from
Section 5.1.4):

case CTLRA_EVENT SLIDER:
switch (e—>slider.id) {
case 10:
mixxx_config_key _set (
"'[Channell]'",
""volume ' ',
e—>slider .value);

break;

5.3.2 Mixxx Feedback to Device

The reverse of the previous paragraph is to
send Mixxx state to the physical device, provid-
ing feedback to the user. Each parameter that
Mixxx exposes via the ControlProxy is avail-
able for reading as well as writing. The allows
the script to query the state of a particular vari-
able from Mixxx, and update the state of an
LED on the device, using the Ctlra encoding
for colour and brightness:

int play;

play = mixxx_config_key_get (
"'[Channell]'",
""play_indicator '");

led = play > 0 ? Oxf{fffffff : 0;

ctlra_dev_light_set (dev,

DEVICE_LED PLAY,
led);

6 Future Work

To make Ctlra a ubiquitous library for event
I/O is a huge task, however the benefit to all
applications if such a library did exist would be
huge too.

Imagine easily scripting your DIY controller
to easily control any aspect of any software -
huge potential for customized powerful user-
experience. OpenAV intends to use the Ctlra
library and integrate it with any projects that
would benefit from a powerful customizable
workflow.

6.1 Device Support

At time of writing, the Ctlra library supports
6 advanced USB HID devices, one USB DMX
device, a generic MIDI backend, and plans are
in place to support a common bluetooth console
controller - but more must be added to make the
Ctlra library really useful!

An interesting angle may be so that DIY plat-
forms like Arduino can be used to build con-
trollers that use a generic Ctlra backend, allow-
ing controllers to be auto-supported.

The previously mentioned hardware enabling
projects that provide access to specific hardware
devices could be integrated with Ctlra, trans-
parently benefiting applications that use Ctlra.

The number of supported hardware devices is
paramount to the success of the Ctlra library, so
OpenAV welcomes patches or pull-requests that
add support for a device.

6.2 Software Environments

From the software point-of-view there is huge
potential for integrating into existing software.

For example mapping Ctlra events to LV2
Atoms would expose the Ctlra backends to any
LV2 Atom capable host.

Integration with DSP languages like FAUST
or PD may prove interesting and allow for faster
prototyping and more powerful control over per-
formance using those tools.

Hardware platforms like the MOD
Duo[MOD, 2017] could use the Ctlra li-
brary to enable musicians to use a wider
variety of controllers in thier on-stage setups in
conjunction with the DSP on the DUO.

7 Conclusion

This paper presents Ctlra, a library that allows
an application to interface with a range of con-
trollers in a powerful and customizable way.

It shows how applications and devices can in-
teract by using generic events. A case study
showcases integrating Ctlra with the open-
source Mixxx project as a proof of concept.

To enable a fast development workflow for
creating mappings between applications and de-
vices, a method to dynamically compile C code
is introduced. This enables developers and users
to write mappings between devices and appli-
cations as if C was a scripting language, but
provides native access to the applications data
structures.

Ctlra is available from github here[OpenAV,
2017], please run the sample programs in the
examples/ directory of the source to experience
the power of Ctlra yourself.

8 Acknowledgements

OpenAV would like to acknowledge the linux-
audio community and open-source ecosystem as
a whole for providing novel solutions to various
problems and being a great place to collaborate
and innovate. For the work on Ctlra certain
people and projects provided lots of inspiration
and support, thanks!

Thanks to the TCC project, which allows dy-
namically compiling Ctlra scipts, it is awesome
to script in C!

Thanks to William Light for writing
maschine.rs, David Robillard for the creation
of PUGL[Robillard, 2017], the Mixxx project
devs (particular shout outs to be_, Pegasus_RPG
and rryan on #mixxx on irc.freenode.net.

References

Ableton. 2017. Music
with live and push —
https://www.ableton.com.

production
ableton.

Fabrice Bellard. 2017. Tcc : Tiny ¢ compiler.
https://http://www.bellard.org/tcc/.

Bitwig. 2017. Bitwig music productiona nd
performance system for windows, macos and
linux. https://www.bitwig.com.

Paul Davis. 2017. Ardour: Record, edit,
and mix on linux, os x and windows.
http://ardour.org/.

Adrian Freed. 2014. o.o: a unified com-
munications framework for music, interme-
dia and cloud interaction. International Com-
puter Music Conference (ICMC) 2014.

William Light. 2016. Maschine.rs, open-
source ni maschine device handling.
https://github.com/wrl/maschine.rs.

Mixxx. 2017. Mixxx dj software, dj your way.
for free. https://mixxx.org/.

MOD. 2017. Mod duo, the definitive stomp-
box. https://moddevices.com/pages/mod-
duo.

OpenAV. 2017. Ctlra is a library pro-
viding support for controllers, designed
to integrate hardware and software.
https://github.com/openAVproductions/
openAV-Ctlra.

OpenKinect-Community. 2017. Open source
libraries that will enable the kinect to
be used with windows, linux, and mac.
https://openkinect.org.

Hanz Petrov. 2017. Introduction
to the ableton framework classes.
http://remotescripts.blogspot.com/2010/03/
introduction-to-framework-classes.html.

Neale Pickett. 2017.
dj controller driver for
https://github.com /nealey /hdjd.

Hercules
linux.

David Robillard. 2017. Pugl is a min-
imal portable api for opengl guis.
https://drobilla.net /software/pugl.

Donnie Smith. 2007. A collection
of linux tools written in ¢ for in-
terfacing to the nintendo wiimote.

http://abstrakraft.org/cwiid/.

